Vibration monitoring in a pumppipeline system

Dr. Ferenc Hegedűs (fhegedus@hds.bme.hu)

1. Introduction of the problem

- Developments of a vibration monitoring technique based on measurement of pressure signals
- Testing in real environment

3638865

"A"

00

Comparison, conclusions

2. Vibration monitoring

- Summary of the method:
 - 1. Pressure signal
 - 2. Sampling
 - 3. FFT
 - 4. Spectra

3. Characteristic curves

H-Q jelleggörbék - "A" szivattyú

3. Affinity (only check)

4. Origin of the peaks in the spectra

		Fizikai hatás	Hol növeli az amplitúdót?
	Mechanical	Imbalance	f _r (= n/60)
		Eccentricity	f _r
		Deflection of pivot	$1 \cdot f_r - 2 \cdot f_r$
		Fitting errors	1·f _r - 3·f _r (even 3-8·f _r)
		Wear of bearings	$1 \cdot f_r - 3 \cdot f_r$
		Alignment of parts	1·f _r - 6·f _r (maybe 0,5·f _r , 1,5·f _r , 2,5·f _r is)
	Hydrodyn amic	Number of blades	$f_{BPF} (= f_r \cdot z)$
		Flow separation	Small frequency broadband noise
		Cavitation	Broadband noise at high frequency
	Motor	Motor instability	Frequency modulation
		Nonlinearity	Harmonic components

5. Waterfall diagram along a characteristic curve

Spectra as a function of the volume flow rate at constant revolution number
Dimensionless quantities:

6. Pump (A), n=630 1/min

- Mainly mechanical forces: eccentricity and imbalance. The frequency f/fr=1 has been strongly excited.
- Effect of nonlinearity is clear. (Exponential decay of the harmonics)
- The number of the blades are 7! The frequency component f/fr=7 has been excited by the blades of the impeller. This peak has a physical origin, not only a harmonic component.

6. Pump (A), n=760 1/min

- Similar conclusion as before!
- The frequency component f/fr=1suppress the frequency component corresponding to the blade passage frequency.

6. Pump (A), n=920 1/min

- A broadband noise appear approximately at relative flow rate lower than Q/QN = 1.4. Here the vibration and the resonance of the whole test rig could be heard.
- This strong vibration smoothen the blade passage frequency.
- The appearance of the frequency components f/fr=4-5 suggests the strengthen of mechanical forces: fitting and alignment inaccuracy etc...

6. Pump (A), n=1030 1/min

Similar conclusion as before!

6. Pump (A), n=1230 1/min

- Similar conclusion as before!
- It can be clearly seen that above Q/Qn=1.2 the mechanical noise disappears and the main frequency component comes from the eccentricity and imbalance. The rest of the peaks are the effect of nonlinearity.

6. Pump (A), n=1350 1/min

Strong motor instability as a form of frequency modulation.

Vízesés diagram n = 1350 1/min $Q_N = 0.0020687 \text{ m}^3/\text{s}$ 0.07 --0.06 0.05 -0.04 -2 0.03 -1.5 Q/Q_N[-] 0.01 -0.5 0 0 0 6 8 9 10 11 12 13 14 15 f/f_r [-]

6. Pump (A), n=1530 1/min

- The motor instability weakens, the frequency modulation is weak.
 - Approximately above Q/QN=1.5 the motor instability disappears.

6. Pump (A), n=1650 1/min

 Strengthen the mechanical noise. (Strongly excited harmonics)

6. Pump (A), n=1820 1/min

• The mechanical noise strengthen further. It is not surprising since the forces in such cases are proportional to the second power of the revolution number.

6. Pump (A), n=1950 1/min

Similar conclusion as before!

6. Pump (A), n=2100 1/min

Similar conclusion as before!

6. Pump (A), n=2250 1/min

- Similar conclusion as before!
- At small flow rates, the appearance of "half" frequencies suggest the influence of the improper alignment of mechanical parts(according to the literature).

6. Pump (A), n=2250 1/min

Similar conclusion as before!

6. Pump (A), n=2550 1/min

Similar conclusion as before!

6. Pump (A), n=2700 1/min

Similar conclusion as before!

6. Pump (A), n=2850 1/min

Similar conclusion as before!

6. Pump (A), n=3000 1/min

Similar conclusion as before!

7. Pump (B), n=1300 1/min

- Mainly hydrodynamic noise.
- The number of the blades is 6!
- There is no peak from eccentricity and imbalance.
- The noise level is orders of magnitudes smaller compared to pump (A)!

7. Pump (B), n=1600 1/min

The peak due to eccentricity and imbalance appears only at this revolution number, which has exponentially decaying harmonics.

7. Pump (B), n=1850 1/min

Only hydrodynamic noise again.

7. Pump (B), n=2210 1/min

Similar conclusion as before!

7. Pump (B), n=2400 1/min

Similar conclusion as before!

7. Pump (B), n=2650 1/min

Similar conclusion as before!

7. Pump (B), n=2890 1/min

Similar conclusion as before!

7. Pump (B), n=3000 1/min

Similar conclusion as before!

