PARAMETRIC HYPOTHESIS TESTS

Question	H_0 null hypothesis	Test	Observed value	Critical value	Accepted if
Is the mean of ξ a prescribed a_0 number, when σ standard deviation is known?	$M(\xi) = a_0$	U-test	$u_{obs} = \frac{\bar{x} - a_0}{\frac{\sigma}{\sqrt{n}}}$	$u_{crit} = \Phi^{-1} \left(\frac{p+1}{2} \right)$ =NORM.S.INV((p+1)/2)	$ u_{obs} < u_{crit}$
Is the mean of ξ a prescribed a_0 number, when σ standard deviation is unknown?	$M(\xi)=a_0$	T-test	$t_{obs} = \frac{\bar{x} - a_0}{\frac{s^*}{\sqrt{n}}}$	t _{crit} =T.INV.2T(1-p;n-1)	$ t_{obs} < t_{crit}$
Are the means of ξ and η independent random variables equal, when their standard deviations σ_{ξ} and σ_{η} are known?	$M(\xi) = M(\eta)$	Two-sample U-test	$u_{obs} = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}}$	$u_{crit} = \Phi^{-1} \left(\frac{p+1}{2} \right)$ =NORM.S.INV((p+1)/2)	$ u_{obs} < u_{crit}$
Are the means of ξ and η independent random variables equal, when their standard deviation σ_{ξ} and σ_{η} are unknown?	$M(\xi) = M(\eta)$	Welch-test	$w_{obs} = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{S_x^{*2}}{n_x} + \frac{S_y^{*2}}{n_y}}}$	$f = \frac{\left(\frac{S_x^{*2}}{n_x} + \frac{S_y^{*2}}{n_y}\right)^2}{\frac{S_x^{*4}}{n_x^2(n_x - 1)} + \frac{S_y^{*4}}{n_y^2(n_y - 1)}}$ $w_{crit} = \textbf{T.INV.2T(1-p;f)}$	w _{obs} < w _{crit}
Are the standard deviations of ξ and η equal?	$D(\xi) = D(\eta)$	F-test	$f_{obs} = \max\left(\frac{{s_x^*}^2}{{s_y^*}^2}; \frac{{s_y^*}^2}{{s_x^*}^2}\right)$	$f_{krit} = \mathbf{F}. \mathbf{INV}. \mathbf{RT}\left(\frac{1-\mathbf{p}}{2}; \mathbf{n}_x - 1; \mathbf{n}_y - 1\right)$ where $s_x^* > s_y^*$	$f_{obs} < f_{crit}$
Is the minimum/maximum element of the measurement belong to the distribution, or is it a measurement error?	The minimum/maximum element belongs to the distribution.	Grubbs test	$g_{obs,max} = \frac{max - \bar{x}}{\frac{s^*}{s}}$ $g_{obs,min} = \frac{\bar{x} - min}{s^*}$	g_{crit} : form table	g _{obs} < g _{crit}
Did the mean change through the measurement.	The mean did not change.	Abbé test	$q^{2} = \frac{1}{2(n-1)} \sum_{l=1}^{n-1} (x_{l+1} - x_{l})^{2}$ $r_{obs} = \frac{q^{2}}{s^{*2}}$	r_{crit} : form table	$r_{obs} > r_{crit}$

NON PARAMETRIC TESTS

Question	H_0 null hypothesis	Test	Observed value	Critical value	Accepted if
Is the ξ random variable follows a given F distribution?	ξ follows the given F distribution.	Goodness of fit test with $\chi^2 - \text{test}$	$\chi_{obs}^2 = \sum_{i=1}^r \frac{(\nu_i - Np_i)^2}{Np_i}$	$\chi^{2}_{crit} = CHISQ.INV.RT(1 - p; f)$ $f = r - 1 - k$ k is the number of estimated parameters	$\chi^2_{obs} < \chi^2_{crit}$
Are ξ and η independent random variables follow the same distribution?	ξ and η follow the same distribution.	Homogeneity test with $\chi^2 - ext{test}$	$\chi_{obs}^2 = nm \sum_{i=1}^r \frac{\left(\frac{\nu_i}{n} - \frac{\mu_i}{m}\right)^2}{\nu_i + \mu_i}$	$\chi^{2}_{crit} = CHISQ.INV.RT(1 - p; f)$ $f = r - 1 - k$ k is the number of estimated parameters	$\chi^2_{obs} < \chi^2_{crit}$