Basic equations of flow systems, canonical form, characteristics, 1D unsteady subsonic flow,
 2D supersonic steady flow

1. Basic flow equations of fluid flow

Notations:

w velocity vector
p pressure
$\rho \quad$ density
T absolute temperature
$u \quad$ specific internal energy
$e \quad$ specific total energy $e=u+\frac{w^{2}}{2}$
$h \quad$ specific enthalpy
m mass
I momentum
F force
$E \quad$ energy
V Volume
A surface, area
n normal vector of surface
P power
$\dot{Q} \quad$ heat power
Conservation of mass: $\quad \frac{d m}{d t}=\frac{d}{d t} \int_{V} \rho d V=\int_{V} \frac{\partial \rho}{\partial t} d V+\int_{A} \rho \mathbf{w} \cdot \mathbf{n} d A=0$.
Conservation of momentum: $\quad \frac{d \mathbf{I}}{d t}=\frac{d}{d t} \int_{V} \rho \mathbf{w} d V=\int_{V} \frac{\partial \rho \mathbf{w}}{\partial t} d V+\int_{A} \rho \mathbf{w w} \cdot \mathbf{n} d A=\mathbf{F}_{\text {body }}+\mathbf{F}_{\text {surface }}$.
Conservation of energy: $\quad \frac{d E}{d t}=\frac{d}{d t} \int_{V} \rho e d V+\int_{A} \rho e \mathbf{w} \cdot \mathbf{n} d A=P_{b o d y}+P_{\text {surface }}+\dot{Q}$.
By neglecting surface friction surface forces result from pressure distribution on channel walls.

Its power is

$$
\begin{aligned}
& \mathbf{F}_{\text {pressure }}=-\int_{A} p \cdot \mathbf{n} d A . \\
& P_{\text {pressure }}=-\int_{A} p \mathbf{w} \cdot \mathbf{n} d A .
\end{aligned}
$$

Let's write these equations for a channel with cross section $A=A(x)$ varying along the x axis. The area A doesn't change in time. Velocity \mathbf{w} - average velocity- is parallel to the normal vector \mathbf{n} of channel cross section A, thus $\mathbf{w} \cdot \mathbf{n}=w$.
Body forces will be neglected; surface forces will be identified with pressure force. The above equations are integrated on an elementary volume $d V=A d x$. We get three conservation equations in the above order.

Conservation of mass:

$$
\frac{\partial(\rho A)}{\partial t}+\frac{\partial(\rho A w)}{\partial x}=0,
$$

Conservation of momentum:

$$
\frac{\partial(\rho A w)}{\partial t}+\frac{\partial A\left(\rho w^{2}+p\right)}{\partial x}=p \frac{d A}{d x},
$$

Conservation of energy:

$$
\frac{\partial(\rho e A)}{\partial t}+\frac{\partial(\rho w e+p w) A}{\partial x}=\dot{Q} .
$$

These equations can be written in the concise form $\frac{\partial \mathbf{U}}{\partial t}+\frac{\partial \mathbf{\Phi}}{\partial x}=\mathbf{S}$, where

$$
\mathbf{U}=\left(\begin{array}{c}
\rho A \\
\rho w A \\
\rho e A
\end{array}\right), \quad \quad \mathbf{\Phi}=\left(\begin{array}{c}
\rho w A \\
\left(\rho w^{2}+p\right) A \\
(\rho w e+p w) A
\end{array}\right) \quad \mathbf{S}=\left(\begin{array}{c}
0 \\
p \frac{d A}{d x} \\
\dot{Q}
\end{array}\right)
$$

Some numerical codes use this style as fluxes Φ are defined on the boundaries of elementary cells, e.g. hexahedra's while elements of U are defined in the centres of cells when integrating the conservation equations on a cell having a finite volume.
Through a lengthy computation one dimensional equations can be transformed into nonconservation form if e.g. conservation of mass is substituted into conservation of momentum after differentiating product-terms. We get finally

Conservation of mass:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\rho \frac{\partial w}{\partial x}+w \frac{\partial \rho}{\partial x}=-\frac{\rho w^{2}}{A} \frac{d A}{d x} \tag{*}
\end{equation*}
$$

Conservation of momentum: $\quad \frac{\partial w}{\partial t}+\frac{1}{\rho} \frac{\partial p}{\partial x}+w \frac{\partial w}{\partial x}=0$,
Conservation of energy:

$$
\begin{equation*}
\frac{\partial p}{\partial t}+w \frac{\partial p}{\partial x}+\rho c^{2} \frac{\partial w}{\partial x}=\dot{Q}-\frac{\rho w c^{2}}{A} \frac{d A}{d x} . \tag{**}
\end{equation*}
$$

Speed of sound has been denoted by c in the last equation defined by $c^{2}=\frac{d p}{d \rho}=\kappa R T=\kappa \frac{p}{\rho}$.
We can summarize the three basic lows again this time in vector-matrix form:

$$
\frac{\partial \mathbf{V}}{\partial t}+\mathbf{M} \frac{\partial \mathbf{V}}{\partial x}=\mathbf{S} .
$$

Actually

$$
\frac{\partial}{\partial t}\left(\begin{array}{l}
\rho \tag{***}\\
w \\
p
\end{array}\right)+\left(\begin{array}{ccc}
w & \rho & 0 \\
0 & w & \frac{1}{\rho} \\
0 & \rho c^{2} & w
\end{array}\right) \cdot \frac{\partial}{\partial x}\left(\begin{array}{c}
\rho \\
w \\
p
\end{array}\right)=\left(\begin{array}{c}
-\frac{\rho w^{2}}{A} \frac{d A}{d x} \\
0 \\
\dot{Q}-\frac{\rho w c^{2}}{A} \frac{d A}{d x}
\end{array}\right)
$$

The second term is the product of a matrix and a vector. Eigenvalues of matrix $\mathbf{M}=\left(\begin{array}{ccc}w & \rho & 0 \\ 0 & w & \frac{1}{\rho} \\ 0 & \rho c^{2} & w\end{array}\right)$ play an important role with respect to existence of solutions of the equation system. The eigenvectors \mathbf{e}_{i} are solutions of the homogenous algebraic equation $\left(\mathbf{M}-\lambda_{i} \mathbf{E}\right) \mathbf{e}_{i}=0$ where \mathbf{E} is the unite matrix. In order that a solution exists $\operatorname{det}(\mathbf{M}-\lambda \mathbf{E})=0$ must be valid. In details

$$
\operatorname{det}\left|\begin{array}{ccc}
w-\lambda & \rho & 0 \\
0 & w-\lambda & \frac{1}{\rho} \\
0 & \rho c^{2} & w-\lambda
\end{array}\right|=0 \text {, or }(w-\lambda)\left((w-\lambda)^{2}-c^{2}\right]=0
$$

It can be seen that the three eigenvalues are

$$
\begin{aligned}
& \lambda_{1}=w, \\
& \lambda_{2}=w+c, \\
& \lambda_{3}=w-c .
\end{aligned}
$$

The importance of these eigenvalues are obvious if we want to describe the unsteady isentropic flow of an ideal gas through a pipe of constant cross section. In this case equations $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ are

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+\rho \frac{\partial w}{\partial x}+w \frac{\partial \rho}{\partial x}=\frac{\partial p}{\partial t}+w \frac{\partial p}{\partial x}+\rho c^{2} \frac{\partial w}{\partial x}=0 \tag{1}\\
& \frac{\partial w}{\partial t}+\frac{1}{\rho} \frac{\partial p}{\partial x}+w \frac{\partial w}{\partial x}=0 \tag{2}
\end{align*}
$$

we have introduced the square of sound velocity c in equation $\left({ }^{*}\right)$ giving the second form of (1).
Differentiating (1) with respect to t and (2) with respect to x then substituting $\frac{\partial^{2} w}{\partial x^{2}}$ from the x derivative of equation (1) we get a second order partial differential equation (PDE) for the unknown p. In this new equation only first order partial derivatives of the dependent variables stand beside the second partial derivatives of p :

$$
\begin{equation*}
\left(w^{2}-c^{2}\right) \frac{\partial^{2} p}{\partial x^{2}}+2 w \frac{\partial^{2} p}{\partial x \partial t}+\frac{\partial^{2} p}{\partial t^{2}}=F\left(w, \frac{\partial w}{\partial t}, \frac{\partial w}{\partial x}, \frac{\partial p}{\partial x}\right) \tag{3}
\end{equation*}
$$

The above equation can be written in general form

$$
\begin{equation*}
a(x, t) \frac{\partial^{2} p}{\partial x^{2}}+2 b(x, t) \frac{\partial^{2} p}{\partial x \partial t}+c(x, t) \frac{\partial^{2} p}{\partial t^{2}}=F(\text { lower orderterms }) \tag{3*}
\end{equation*}
$$

2. The type of the $2^{\text {nd }}$ order PDE, canonical form

Equations (3^{*}) is called a second order PDE for the unknown $p(x, t)$ quasilinear in its main part. The terms containing second order derivatives are called the main part.
Coefficients a, b, c of the second order partial derivatives can be arranged into a symmetric matrix. This matrix has the form
in the general case ($\left.3^{*}\right) \mathbf{A}=\left(\begin{array}{ll}a(x, t) & b(x, t) \\ b(x, t) & c(x, t)\end{array}\right)$ and in the special case (3) $\mathbf{A}=\left(\begin{array}{cc}w^{2}-c^{2} & w \\ w & 1\end{array}\right)$.
The type of the PDE is determined by the sign of the determinant $\operatorname{det}(\mathbf{A})=a(x, t) c(x, t)-b^{2}(x, t)$ of matrix \mathbf{A}.

- If $\operatorname{det}(\mathbf{A})>0$, definite,
- if $\operatorname{det}(\mathbf{A})=0$, semidefinite, the type of the PDE is the type of the PDE is the type of the PDE is
elliptic,
parabolic,
hyperbolic.

Let's transform the independent variables x, t through the functions $\xi=\xi(x, t), \eta=\eta(x, t)$ leading to a simpler form of the equation. We suppose that ξ and η are continuously differentiable functions thus the Jacobian must be nonzero, $J=\frac{\partial(\xi, \eta)}{\partial(x, t)} \neq 0$. By applying the chain rule:

$$
\frac{\partial}{\partial x}=\frac{\partial}{\partial \xi} \xi_{x}+\frac{\partial}{\partial \eta} \eta_{x} \quad ; \quad \frac{\partial}{\partial t}=\frac{\partial}{\partial \xi} \xi_{t}+\frac{\partial}{\partial \eta} \eta_{t}
$$

further

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial x^{2}}=\left(\frac{\partial^{2}}{\partial \xi^{2}} \xi_{x}+\frac{\partial^{2}}{\partial \xi \partial \eta} \eta_{x}\right) \xi_{x}+\frac{\partial}{\partial \xi} \xi_{x x}+\left(\frac{\partial^{2}}{\partial \eta \partial \xi} \xi_{x}+\frac{\partial^{2}}{\partial \eta^{2}} \eta_{x}\right) \eta_{x}+\frac{\partial}{\partial \eta} \eta_{x x}= \\
= & \frac{\partial^{2}}{\partial \xi^{2}} \xi_{x}^{2}+2 \frac{\partial^{2}}{\partial \xi \partial \eta} \xi_{x} \eta_{x}+\frac{\partial^{2}}{\partial \eta^{2}} \eta_{x}^{2}+\xi_{x x} \frac{\partial}{\partial \xi}+\eta_{x x} \frac{\partial}{\partial \eta} .
\end{aligned}
$$

Similarly

$$
\frac{\partial^{2}}{\partial x \partial t}=\frac{\partial^{2}}{\partial \xi^{2}} \xi_{x} \xi_{t}+\frac{\partial^{2}}{\partial \xi \partial \eta}\left(\xi_{x} \eta_{t}+\eta_{x} \xi_{t}\right)+\frac{\partial^{2}}{\partial \eta^{2}} \eta_{x} \eta_{t}+\ldots
$$

and

$$
\frac{\partial^{2}}{\partial t^{2}}=\frac{\partial^{2}}{\partial \xi^{2}} \xi_{t}^{2}+2 \frac{\partial^{2}}{\partial \xi \partial \eta} \xi_{t} \eta_{t}+\frac{\partial^{2}}{\partial \eta^{2}} \eta_{t}^{2}+\ldots .
$$

Putting these derivatives into the left hand side of Eq. (3*) the second order terms will be

$$
\begin{align*}
& \quad\left(a(x, t) \xi_{x}^{2}+2 b(x, t) \xi_{x} \xi_{t}+c(x, t) \xi_{t}^{2}\right) \frac{\partial^{2}}{\partial \xi^{2}}+ \\
& \quad+2\left(a(x, t) \xi_{x} \eta_{x}+b(x, t)\left(\xi_{x} \eta_{t}+\eta_{x} \xi_{t}\right)+c(x, t) \xi_{t} \eta_{t}\right) \frac{\partial^{2}}{\partial \xi \partial \eta}+ \\
& + \tag{4*}\\
& +\left(a(x, t) \eta_{x}^{2}+2 b(x, t) \eta_{x} \eta_{t}+c(x, t) \eta_{t}^{2}\right) \frac{\partial^{2}}{\partial \eta^{2}}=\ldots .
\end{align*}
$$

The coefficients of the first and third term have the same structure with the only difference that the coefficient in the first term contains derivatives of the new variable ξ while the third term derivatives of η. When equating the coefficients of the first and third term in Eq. (4) with zero only the middle term remains.

$$
\begin{align*}
& a(x, t) \xi_{x}^{2}+2 b(x, t) \xi_{x} \xi_{t}+c(x, t) \xi_{t}^{2} \stackrel{!}{=} 0 \\
& a(x, t) \eta_{x}^{2}+2 b(x, t) \eta_{x} \eta_{t}+c(x, t) \eta_{t}^{2} \stackrel{!}{=} 0 \tag{*}
\end{align*}
$$

From the first equation

$$
\xi_{t}=\frac{-2 b(x, t) \xi_{x} \pm \sqrt{4 b^{2}(x, t) \xi_{x}^{2}-4 c(x, t) a(x, t) \xi_{x}^{2}}}{2 c(x, t)}=\frac{-b(x, t) \pm \sqrt{-\operatorname{det}(\mathbf{A})}}{c(x, t)} \xi_{x}
$$

The difference equation of a $\xi(x, t)=$ constant level as the change (total derivative) of ξ along such a line is zero:

$$
d \xi=\xi_{x} d x+\xi_{t} d t=0, \quad \text { or } \quad \xi_{t}=-\frac{d x}{d t} \xi_{x}
$$

By comparing the last two equations one can see that the slope of a $\xi(x, t)=$ constant line is

$$
\frac{d x}{d t}=\frac{b(x, t) \mp \sqrt{-\operatorname{det}(\mathbf{A})}}{c(x, t)} .
$$

This equation has

- two real solutions if $\operatorname{det}(\mathbf{A})<0$ thus for hyperbolic equations,
- one real solution if $\operatorname{det}(\mathbf{A})=0$ thus for parabolic equations and
- no real solutions if $\operatorname{det}(\mathbf{A})>0$ thus for elliptic equations.

These characteristics had been found by transforming the $2^{\text {nd }}$ order PDE into its "canonical form". The transformation was executed on the independent variables.

In the special case (3) the value of the determinant $\operatorname{det}(\mathbf{A})=\left(w^{2}-c^{2}\right) \cdot 1-w \cdot w=-c^{2}$ is negative our equation (3) is of hyperbolic type.
As we see; wave equation is typically hyperbolic.
The equation of heat conduction or of 2D diffusion $\left(\frac{\partial C}{\partial t}-\alpha\left(\frac{\partial^{2} C}{\partial x^{2}}+\frac{\partial^{2} C}{\partial y^{2}}\right)=-u \frac{\partial C}{\partial x}-v \frac{\partial C}{\partial y}\right)$ is parabolic, 2D vortex free flow of an incompressible fluid $\left(\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}=0\right)$ or an electromagnetic field is elliptic. Equations (5^{*}) related to the special case are

$$
\begin{align*}
& \left(w^{2}-c^{2}\right) \xi_{x}^{2}+2 w \xi_{x} \xi_{t}+\xi_{t}^{2}=0 \\
& \left(w^{2}-c^{2}\right) \eta_{x}^{2}+2 w \eta_{x} \eta_{t}+\eta_{t}^{2}=0 \tag{5}
\end{align*}
$$

From the first equation

$$
\frac{d x}{d t}=w \mp \sqrt{-\operatorname{det}(\mathbf{A})}=w \mp c .
$$

The characteristic differential equation will disintegrate into a pair of two simple equations

$$
\begin{equation*}
\frac{d x}{d t}=w \pm c . \tag{6}
\end{equation*}
$$

The solutions of (6) are:

$$
\begin{aligned}
& x=(w+c) t+\xi \\
& x=(w-c) t+\eta
\end{aligned}
$$

where rearranging for the integration constants ξ and η give

$$
\begin{aligned}
& \xi=x-(w+c) t, \\
& \eta=x-(w-c) t .
\end{aligned}
$$

The slopes of the two series of characteristic lines: $\quad \xi=$ constant., and $\eta=$ constant \quad on the $t-x$ plane is identical with the eigenvalues of matrix \mathbf{M}, but NOT of A!!!

After having found the transformation simplifying the main part of the $2^{\text {nd }}$ order PDE we can calculate this transformed main part.
The coefficient of the derivative $\frac{\partial^{2} p}{\partial \xi \partial \eta}$ in formula (4*) will be $2\left(a(x, t)-\frac{b^{2}(x, t)}{c(x, t)}\right) \xi_{x} \eta_{x}$
and in the special case (4) this coefficient is $-4 c^{2}$ thus the simple main part is

$$
-4 c^{2} \frac{\partial^{2} p}{\partial \xi \partial \eta}=\ldots .
$$

this is the canonical form of the PDE, its type is hyperbolic.
Through a second transformation $\psi=\xi+\eta, \varphi=\xi-\eta$ we get the other canonical form of hyperbolic $2^{\text {nd }}$ order PDE's: $\frac{\partial^{2} p}{\partial \xi \partial \eta}=\frac{\partial^{2} p}{\partial \psi^{2}}-\frac{\partial^{2} p}{\partial \varphi^{2}}=\ldots .$. .

Method of characteristics (MOC); the form of ODE's to be solved along the characteristics

Let's add Eq.(1) to the ρc-times of Eq. (2) then push the term ρc into the derivatives of w ! We receive $\frac{\partial p}{\partial t}+\rho w c \frac{\partial w}{\partial t}+c \frac{\partial p}{\partial x}+c \frac{\partial \rho c w}{\partial x}+w \frac{\partial p}{\partial x}+w \frac{\partial \rho c w}{\partial x}=0$. This can be written in a denser form: $\frac{\partial}{\partial t}(p+\rho w c)+(w+c) \frac{\partial}{\partial x}(p+\rho c w)=0$. Remembering that Eq. (6) with the upper sign was $w+c=\frac{d x}{d t}$, we see that $\frac{\partial}{\partial t}(p+\rho w c)+\frac{d x}{d t} \frac{\partial}{\partial x}(p+\rho c w)=\frac{d}{d t}(p+\rho c w)=0$ along the $\xi=$ constant characteristics. Similarly, along the $\eta=$ constant characteristics $\frac{d}{d t}(p-\rho c w)=0$ is true.

Thus we have received two ODE's which can be integrated very easily and the unknowns p and w can be computed in small time steps.

Initial and boundary conditions

The importance of the type of $2^{\text {nd }}$ order PDE-s lies in the fact that it determines the type of initial and boundary conditions assuring unique solutions.

If; for example; we prescribe for the starting time $t=0$ along a section of the x-axis the initial values $p(x, t=0)$ then the function $p(x, t)$ can be computed for the triangular region between the two characteristics $\xi=$ constant starting from the left border and $\eta=$ constant starting from the right border of the x-interval.

Thus if we need to get the solution over the whole pipe length $0 \leq x \leq L$ then not only the initial $p(x, t=0)$ distribution but also the boundary values at $x=0$ and at $x=L$ must be known.

These are the boundary values

$$
p(x=0, t) \text { and } p(x=L, t) .
$$

3. Steady flow problem leading to a hyperbolic equation

The 2D steady isentropic flow of a compressible gas is described by the following equations (u, v denote the components of velocity vector \mathbf{w}):

Continuity:

$$
\begin{align*}
& \frac{\partial(\rho u)}{\partial x}+\frac{\partial(\rho v)}{\partial y}=0 . \tag{7}\\
& u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=-\frac{1}{\rho} \frac{\partial p}{\partial x}=-\frac{c^{2}}{\rho} \frac{\partial \rho}{\partial x} \tag{8}\\
& u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}=-\frac{1}{\rho} \frac{\partial p}{\partial y}=-\frac{c^{2}}{\rho} \frac{\partial \rho}{\partial y} \tag{9}
\end{align*}
$$

Adding the u-times of Eq. (8) to the v-times of Eq. (9) and substituting Eq. (7) into the RHS of this equation one receives

$$
\begin{equation*}
\left(u^{2}-c^{2}\right) \frac{\partial u}{\partial x}+\left(v^{2}-c^{2}\right) \frac{\partial v}{\partial y}+u v\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)=0 . \tag{10}
\end{equation*}
$$

Isentropic flow is also a vortex free flow this is a corollary of the Crocco equation (*).

$$
\begin{equation*}
\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}=0 \tag{11}
\end{equation*}
$$

(*) For the reversible, adiabatic case the first law of thermodynamics says $d q=T d s=d h-\frac{d p}{\rho}=0$. Thus $\operatorname{grad} h=\frac{1}{\rho} \operatorname{grad} p$. According to this and to Euler's equation $\operatorname{grad}\left(\frac{\mathbf{w}^{2}}{2}\right)-\mathbf{w} \times \operatorname{rot} \mathbf{w}=-\frac{1}{\rho} \operatorname{grad} p=-\operatorname{grad} h$.
This gives $\mathbf{w} \times \operatorname{rot} \mathbf{w}=\operatorname{grad}\left(\frac{\mathbf{w}^{2}}{2}+h\right)=\operatorname{grad} h_{\ddot{O}}$. However this is zero, thus either rot $\mathbf{w}=0$ or rot \mathbf{w} is parallel with the velocity vector \mathbf{w} (Beltrami flow).

Now we shall define the coordinate x, the main flow direction as "time-like". Then Eqs. (10) and (11) can be rewritten in a matrix vector formulation. Partial derivatives will be written in the short "subscript-form".

$$
\left(\begin{array}{cc}
u^{2}-c^{2} & u v \\
0 & -1
\end{array}\right) \cdot\binom{u_{x}}{v_{x}}+\left(\begin{array}{cc}
u v & v^{2}-c^{2} \\
1 & 0
\end{array}\right) \cdot\binom{u_{y}}{v_{y}}=\binom{0}{0}
$$

With concise notation: $\mathbf{A}_{1} \mathbf{w}_{x}+\mathbf{A}_{2} \mathbf{w}_{y}=\mathbf{0}$.
We need the earlier (${ }^{(* * *)}$ form thus we look for $\mathbf{w}_{x}+\mathbf{A}_{1}^{-1} \cdot \mathbf{A}_{2} \mathbf{w}_{y}=\mathbf{0}$. We must find the eigenvalues of the matrix $\mathbf{M}=\mathbf{A}_{1}^{-1} \cdot \mathbf{A}_{2}$. Those eigenvalues will determine the slopes of characteristics running through the $x-y$ plane. The inverse of matrix \mathbf{A}_{1} denoted by $\mathbf{A}_{1}{ }^{-1}$ is the transposed matrix constructed from the under determinants belonging the elements of \mathbf{A}_{1} divided by the determinant of \mathbf{A}_{1}. For a 2×2 matrix it is very easy to find. $\operatorname{det}\left(\begin{array}{cc}u^{2}-c^{2} & u v \\ 0 & -1\end{array}\right)=-\left(u^{2}-c^{2}\right)$, thus $\mathbf{A}_{1}^{-1}=\frac{-1}{\left(u^{2}-c^{2}\right)} \cdot\left(\begin{array}{cc}-1 & u v \\ 0 & u^{2}-c^{2}\end{array}\right)=\left(\begin{array}{cc}\frac{1}{u^{2}-c^{2}} & \frac{u v}{u^{2}-c^{2}} \\ 0 & -1\end{array}\right)$. From this

$$
\mathbf{M}=\mathbf{A}_{1}^{-1} \cdot \mathbf{A}_{2}=\left(\begin{array}{cc}
\frac{1}{u^{2}-c^{2}} & \frac{u v}{u^{2}-c^{2}} \tag{12}\\
0 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
u v & v^{2}-c^{2} \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
\frac{2 u v}{u^{2}-c^{2}} & \frac{v^{2}-c^{2}}{u^{2}-c^{2}} \\
-1 & 0
\end{array}\right)
$$

The eigenvalues of matrix \mathbf{M} are solutions of $\operatorname{det}(\mathbf{M}-\lambda \mathbf{E})=0$. One can control that these are $\lambda_{1}=\frac{u v+\alpha c^{2}}{u^{2}-v^{2}}$ and $\lambda_{2}=\frac{u v-\alpha c^{2}}{u^{2}-v^{2}}$, resp. Here $\alpha \stackrel{\text { denotes }}{=} \sqrt{\frac{u^{2}+v^{2}-c^{2}}{c^{2}}} \sqrt{\frac{|\mathbf{w}|^{2}-c^{2}}{c^{2}}}=\sqrt{M^{2}-1}$, where M is the local Mach-number.

After a lengthy calculation we get an alternate form of the eigenvalues:

$$
\begin{equation*}
\lambda_{1}=\frac{u+\alpha v}{\alpha u-v} \quad \text { and } \quad \lambda_{1}=\frac{\alpha v-u}{\alpha u+v} . \tag{13}
\end{equation*}
$$

With further notations

$$
\begin{gather*}
\frac{v}{u}=\tan \vartheta \quad \text { and } \quad \frac{1}{\alpha}=\tan \beta \tag{14}\\
\lambda_{1}=\frac{\frac{1}{\alpha}+\frac{v}{u}}{1-\frac{v}{u} \cdot \frac{1}{\alpha}}=\frac{\tan \beta+\tan \vartheta}{1-\tan \vartheta \cdot \tan \beta}=\tan (\vartheta+\beta) .
\end{gather*}
$$

Thus $\lambda_{1}=\tan (\vartheta+\beta)$ and similarly $\lambda_{2}=\tan (\vartheta-\beta)$. The slopes of characteristics is equal to the eigenvalues (see the earlier marked sentence). Now one can draw the velocity vector \mathbf{w} and the two characteristics $\xi=$ constant and $\eta=$ constant in the $x-y$ plane.

Fig. 1 Characteristics ξ, η, velocity vector \mathbf{w}, angles β and ϑ
The information con of point P is bordered by the characteristic line $\xi=$ constant and $\eta=$ constant starting from point P. Happenings only in this region are influenced by point P. These characteristic lines are also called as Mach-lines.

Equations to be solved along the characteristics

From $\frac{v}{u}=\tan \vartheta$ follows $u=w \cos \vartheta ; v=w \sin \vartheta$. Naturally, the partial derivatives can be expressed with w and ϑ, e.g. $\frac{\partial u}{\partial x}=\frac{\partial w}{\partial x} \cdot \cos \vartheta-w \cdot \sin \vartheta \frac{\partial \vartheta}{\partial x}$. Other first order derivatives have similar forms. After substituting these into Eq. (10) and rearranging we have

$$
\begin{equation*}
c^{2} w\left(\frac{\partial \vartheta}{\partial x} \sin \vartheta-\frac{\partial \vartheta}{\partial y} \cos \vartheta\right)+\left(w^{2}-c^{2}\right)\left(\frac{\partial w}{\partial x} \cos \vartheta+\frac{\partial w}{\partial y} \sin \vartheta\right)=0 . \tag{10a}
\end{equation*}
$$

From the definition of α, β and from the LHS formula (14) $\sin \beta=\frac{c}{w}, \cos \beta=\frac{\sqrt{w^{2}-c^{2}}}{w}$, thus $\cot \beta=\frac{\sqrt{w^{2}-c^{2}}}{c}=\sqrt{M^{2}-1}$. With all these and after dividing (10a) with $c w^{2}$ we get:

$$
\sin \beta\left(\frac{\partial \vartheta}{\partial x} \sin \vartheta-\frac{\partial \vartheta}{\partial y} \cos \vartheta\right)+\frac{\cot \beta}{w} \cos \beta\left(\frac{\partial w}{\partial x} \cos \vartheta+\frac{\partial w}{\partial y} \sin \vartheta\right)=0 .
$$

After a similar process the $\cos \beta$-times of Eq. (11) is:

$$
\cos \beta\left(\frac{\partial \vartheta}{\partial x} \cos \vartheta+\frac{\partial \vartheta}{\partial y} \sin \vartheta\right)+\frac{1}{w} \cos \beta\left(\frac{\partial w}{\partial x} \sin \vartheta-\frac{\partial w}{\partial y} \cos \vartheta\right)=0
$$

Finally adding these equations (and subtracting in a second step)

$$
\begin{align*}
& \cos (\vartheta-\beta) \frac{\partial \vartheta}{\partial x}+\sin (\vartheta-\beta) \frac{\partial \vartheta}{\partial y}+\frac{\cot \beta}{w}\left(\cos (\vartheta-\beta) \frac{\partial w}{\partial x}+\sin (\vartheta-\beta) \frac{\partial w}{\partial y}\right)=0, \text { or rearranged } \\
& \underline{\underline{\cos (\vartheta-\beta)}}\left(\underline{\underline{\partial \vartheta}}+\frac{\partial \vartheta}{w} \frac{\cot \beta}{\partial x}\right)+\underline{\underline{\sin (\vartheta-\beta)}}\left(\underline{\underline{\partial \vartheta}}+\frac{\partial \cot \beta}{w} \frac{\partial w}{\partial y}\right)=0 \tag{15}
\end{align*}
$$

Along the characteristics $\eta=$ constant $\lambda_{2}=\tan (\vartheta-\beta)=\frac{\sin (\vartheta-\beta)}{\cos (\vartheta-\beta)}=\left.\frac{d y}{d x}\right|_{\eta=\text { áll. }}$, so

$$
\underline{\underline{\frac{\partial}{\partial \xi}}}=\left.\frac{\partial}{\partial x} \cdot \frac{\partial x}{\partial \xi}\right|_{\eta=\text { all. }}+\left.\frac{\partial}{\partial y} \cdot \frac{\partial y}{\partial \xi}\right|_{\eta=\text { áll. }}=\underline{\underline{\cos (\vartheta-\beta) \cdot \frac{\partial}{\partial x}+\sin (\vartheta-\beta) \cdot \frac{\partial}{\partial y}}} .
$$

If we substitute equality $\cot \beta=\sqrt{M^{2}-1}$ into (15) we receive

$$
\begin{equation*}
\frac{\partial \vartheta}{\underline{\partial \xi}}+\frac{\sqrt{M^{2}-1}}{w} \frac{\partial w}{\partial \xi}=0 \quad \text { and } \quad \frac{\partial \vartheta}{\partial \eta}-\frac{\sqrt{M^{2}-1}}{w} \frac{\partial w}{\partial \eta}=0 \text {, resp. } \tag{16}
\end{equation*}
$$

By the help of Fig. 2 we show how to compute intersection P of characteristics starting from points L and R :

$$
\frac{y_{P}-y_{R}}{x_{P}-x_{R}}=\tan \left(\vartheta_{R}+\beta_{R}\right) \text { and } \frac{y_{P}-y_{L}}{x_{P}-x_{L}}=\tan \left(\vartheta_{L}-\beta_{L}\right), \text { resp.; }
$$

from these
$x_{P}=\frac{x_{R} \cdot \tan \left(\vartheta_{R}+\beta_{R}\right)-x_{L} \cdot \tan \left(\vartheta_{L}-\beta_{L}\right)-y_{R}+y_{L}}{\tan \left(\vartheta_{R}+\beta_{R}\right)-\tan \left(\vartheta_{L}-\beta_{L}\right)}$, followed by y_{P} expressed from one of the above equations.

The system of equations to be solved numerically is:
$\underline{\underline{\vartheta_{p}-\vartheta_{R}}}+\sqrt{M_{R}^{2}-1} \frac{w_{P}-w_{R}}{w_{R}}=0$ on $\xi=$ const. and $\underline{\underline{\vartheta_{p}-\vartheta_{L}}}+\sqrt{M_{L}^{2}-1} \frac{w_{P}-w_{L}}{w_{L}}=0$ on $\eta=$ const.
lines.

Fig. 2 Flow computation in point \boldsymbol{P} from known values in points L and R

