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1. Fluid Dynamics

We consider the motion of fluids in the continuum approximation, so that a body B is com-
posed of particles R as displayed in Fig. 1.1. Thereby, a particle R already represents a
macroscopic element. On the one hand a particle has to be small enough to describe the
deformation accurately and on the other hand large enough to satisfy the assumptions of
continuum theory. This means that the physical quantities density ρ, pressure p, velocity v,

Fluid particle

Fluid body B

R

Figure 1.1.: A body B composed of particles R.

temperature T , inner energy e and so on are functions of space and time, and are written as
density ρ(xi, t), pressure p(xi, t), velocity v(xi, t), temperature T (xi, t), inner energy e(xi, t),
etc.. So, the total change of a scalar quantity like the density ρ is

dρ =

(
∂ρ

∂t

)
dt+

(
∂ρ

∂x1

)
dx1 +

(
∂ρ

∂x2

)
dx2 +

(
∂ρ

∂x3

)
dx3 . (1.1)

Therefore, the total derivative (also called substantial derivative) computes by

dρ

dt
=

∂ρ

∂t
+

∂ρ

∂x1

(
dx1

dt

)
+

∂ρ

∂x2

(
dx2

dt

)
+

∂ρ

∂x3

(
dx3

dt

)
=

∂ρ

∂t
+

3∑
1

∂ρ

∂xi

(
dxi
dt

)
=
∂ρ

∂t
+
∂ρ

∂xi

(
dxi
dt

)
︸ ︷︷ ︸

vi

. (1.2)

Note that in the last line of (1.2) we have used the summation rule of Einstein1. Furthermore,
in literature the substantial derivative of a physical quantity is mainly denoted by the capital
letter D and writes as

D

Dt
=

∂

∂t
+ v · ∇ . (1.3)

1.1. Spatial Reference Systems

A spatial reference system defines how the motion of a continuum is described i.e., from
which perspective an observer views the matter. In a Lagrangian frame of reference, the

1In the following, we use both vector and index notation; for details see App. A and B.
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observer monitors the trajectory in space of each material point and measures its physical
quantities. This can be understood by considering a measuring probe which moves together
with the material, like a boat on a river. The advantage is that free or moving boundaries
can be captured easily as they require no special effort. Therefore, the approach is suitable
in the case of structural mechanics. However, its limitation is obtained dealing with large
deformation, as in the case of fluid dynamics. In this case, a better choice is the Eulerian frame
of reference, in which the observer monitors a single point in space when measuring physical
quantities – the measuring probe stays at a fixed position in space. However, contrary to the
Lagrangian approach, difficulties arise with deformations on the domain boundary, e.g., free
boundaries and moving interfaces.
Formally, a deformation of a material body B is defined as a map ψ, which projects each
point X at time t ∈ R to its current location x, in mathematical terms

x = ψ(X, t), ψ : B × R→ R3 .

By coupling structural and fluid mechanics an additional map between the different reference
systems is necessary. In [1] a first method to solve the problem for an incompressible, viscous
fluid has been presented. The so called Arbitrary-Lagrangian-Eulerian (ALE) method com-
bines the advantages of both approaches. The concept is that the observer is neither fixed
nor does move together with the material, but can move arbitrarily. Between each of the
two reference systems a bijective mapping of the spatial variables x (Eulerian system), X
(Lagrangian system) and χ (ALE system) exists, as illustrated in Fig. 1.2. The choice of

La
gra

ngian Syste
m Eularian System

ALE System

Figure 1.2.: Illustration of mapping between reference systems.

reference system effects the partial differential equations (PDEs) through its time derivative.
Exemplified for a quantity f and its velocity v, the total derivative results for the

� Lagrangian system to
Df

Dt
=
∂f

∂t

∣∣∣∣
X

� Eulerian system to
Df

Dt
=

∂f

∂t

∣∣∣∣
x︸ ︷︷ ︸

local change

+ (v · ∇x) f︸ ︷︷ ︸
convective change
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� ALE system to
Df

Dt
=
∂f

∂t

∣∣∣∣
χ

+ (vc · ∇χ) f, (1.4)

with the convective velocity vc = v−vg, the difference between material velocity v and
grid velocity vg.

1.2. Reynolds’ Transport Theorem

To derive the integral form of the balance equations the rate of change of integrals of scalar
and vector functions has to be described, which is known as the Reynolds’ transport theorem.
The volume integral can change for two reasons: (1) scalar or vector functions change (2) the
volume changes. The following discussion is directed to scalar valued functions.

Let’s consider a scalar quantity f(x, t) : Ω × R → R, the change in time in a Lagrangian
system of its volume integral

F (t) :=

∫
Ω(t)

f(x, t) dx (1.5)

is given as
D

Dt
F (t) =

D

Dt

∫
ΩL

f(X, t) dx =

∫
ΩL

∂

∂t
f(X, t) dx . (1.6)

The simple transformation is due to the linearity of the integral and differential operators,
and since the Lagrangian domain ΩL conforms with the material movement, no additional
terms are needed.
In an Eulerian context, time derivation must also take the time dependent domain Ω(t) into
account by adding a surface flux term, which can be formulated as a volume term using the
integral theorem of Gauß. This results in

D

Dt

∫
Ω(t)

f dx =

∫
Ω(t)

∂

∂t
f dx+

∫
Γ(t)

fv · nds

=

∫
Ω(t)

(
∂

∂t
f +∇ · (fv)

)
dx .

(1.7)

1.3. Conservation Equations

The basic equations for the flow field are the conservation of mass, momentum and energy.
Together with the constitutive equations and equations of state, a full set of PDEs is derived.

1.3.1. Conservation of Mass

The mass m of a body is the volume integral of its density ρ,

m =

∫
Ω(t)

ρ(x, t) dx . (1.8)
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Mass conservation states that the mass of a body is conserved over time, assuming there is
no source or drain. Therefore, applying Reynolds’ transport theorem (1.7), results in

Dm

Dt
=

∫
Ω

∂ρ

∂t
dx+

∫
Γ

ρv · nds

=

∫
Ω

(
∂ρ

∂t
+∇ · (ρv)

)
dx = 0.

(1.9)

The integral in (1.9) can be dismissed, as it holds for arbitrary Ω and in the special case of
an incompressible fluid (ρ = const. ∀(x, t) ∈ Ω × R), which may be assumed for low Mach
numbers (see Sec. 1.4), the time and space derivative of the density vanishes. This lead to
the following form of mass conservation equations

∂ρ

∂t
+∇ · (ρv) = 0 (compressible fluid),

∇ · v = 0 (incompressible fluid).
(1.10)

1.3.2. Conservation of Momentum

The equation of momentum is implied by Newtons second law and states that momentum Im

is the product of mass m and velocity v

Im = mv . (1.11)

Derivation in time gives the rate of change of momentum, which is equal to the force F and
reveals the relation to Newtons second law in an Eulerian reference system

F =
DIm

Dt
=

D

Dt
(mv) =

∂

∂t
(mv) +∇ · (mv ⊗ v), (1.12)

where v ⊗ v is a tensor defined by the dyadic product ⊗ (see App. B). The last equality in
(1.12) is derived from Reynolds transport theorem (1.7) and mass conservation (1.10).

The forces F acting on fluids can be split up into forces acting on the surface of the body
FΓ, forces due to momentum of the molecules DIm/Dt and external forces Fex (e.g. gravity,
electromagnetic forces)

F = FΓ +
D

Dt
Im + Fex. (1.13)

Thereby, the surface force computes by

3∑
i=1

FΓj = −
3∑
i=1

∂p

∂xj
Ωnj = −Ω∇p. (1.14)

and the total change of momentum Im by

D

Dt
Im = Ω∇ · [τ ] (1.15)

with the viscous stress tensor [τ ] (see Fig. 1.3).
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Figure 1.3.: Forces acting on a fluid element.

Now, we exploit the fact that m = ρΩ and insert the pressure force (1.14), the viscous force
(1.15) and any external forces per unit volume f acting on the fluid into (1.12). Thereby, we
arrive at the momentum equation

∂ρv

∂t
+∇ · (ρv ⊗ v) = −∇p+∇ · [τ ] + f (1.16)

∂ρv

∂t
+∇ · (ρv ⊗ v + p [I]− [τ ]) = f (1.17)

∂ρvi
∂t

+
∂

∂xj
(ρvjvi + pδij − τij) = fi , (1.18)

with [I] the identity tensor. Furthermore, we introduce the momentum flux tensor [π] defined
by

πij = ρvivj + pδij − τij , (1.19)

and the fluid stress tensor [σ f ] by

[σ f ] = −p [I] + [τ ] . (1.20)

To arrive at an alternative formulation for the momentum equation, also called the non-
conservative form, we exploit the following identities

∇ · (ρv ⊗ v) = ρv · ∇v + v∇ · (ρv) (1.21)

∂ρv

∂t
= ρ

∂v

∂t
+ v

∂ρ

∂t
(1.22)

and rewrite (1.16) by

ρ
∂v

∂t
+ v

∂ρ

∂t
+ v∇ · (ρv) + ρv · ∇v = −∇p+∇ · [τ ] + f . (1.23)

Now, we use the mass conservation and arrive at

ρ
∂v

∂t
+ ρv · ∇v = −∇p+∇ · [τ ] + f (1.24)

ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

+ fi .
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1.3.3. Conservation of energy

The total balance of energy considers the inner, the kinetic and potential energies of a fluid.
Since we do not consider gravity, the total change of energy over time for a fluid element with
mass m is given by

D

Dt

(
m

(
1

2
v2 + e

))
= m

D

Dt

(
1

2
v2 + e

)
+

(
1

2
v2 + e

)
Dm

Dt
(1.25)

with e the inner energy and v2 = v · v. Due to mass conservation, the second term is zero
and we obtain

D

Dt

(
m

(
1

2
v2 + e

))
= ρΩ

D

Dt

(
1

2
v2 + e

)
. (1.26)

This change of energy can be caused by [2]

� heat production per unit of volume: qh Ω

� heat conduction energy due to heat flux qT: (−∂qTi/∂xi) Ω

� energy due to surface pressure force: (−∂/∂xi(pvi)) Ω

� energy due to surface shear force: (−∂/∂xi(τijvj)) Ω

� mechanical energy due to the force density fi given by: (fivi) Ω

Thereby, we arrive at the conservation of energy given by

ρ
D

Dt

(
1

2
v2 + e

)
= −∂qTi

∂xi
− ∂pvi

∂xi
− ∂τijvj

∂xi
+ fivi + qh (1.27)

or in vector notation by

ρ
D

Dt

(
1

2
v2 + e

)
= −∇ · qT −∇ · (pv)−∇ · ([τ ] · v) + f · v + qh . (1.28)

By further exploring thermodynamic relations (see Sec. 1.3.4) and the mechanical energy
(obtained by inner product of momentum conservation with v), we may write (1.28) by the
specific entropy s as follows [3]

ρT
Ds

Dt
= τij

∂vi
∂xj
− ∂qTi

∂xi
+ qh . (1.29)

When heat transfer is neglected, the flow ist adiabatic. It is isentropic, when it is adiabatic
and reversible, which means that the viscous dissipation can be neglected, which leads to (no
heat production)

ρT
Ds

Dt
= 0 . (1.30)

Finally, when the fluid is homogeneous and the entropy uniform ( Ds = 0), we call the flow
homentropic.

6



1.3.4. Constitutive equations

The conservation of mass, momentum and energy involve much more unknowns than equa-
tions. To close the system, additional information is provided by empirical information in
form of constitutive equations. A good approximation is obtained by assuming the fluid to
be in thermodynamic equilibrium. This implies for a homogeneous fluid that two intrinsic
state variables fully determine the state of the fluid.

When we apply specific heat production qh to a fluid element, then the specific inner energy
e increases and at the same time the volume changes by p dρ−1. This thermodynamic relation
is expressed by

de = dqh − p dρ−1 , (1.31)

where the second term describes the work done on the fluid element by the pressure. If the
change occurs sufficiently slowly, the fluid element is always in thermodynamic equilibrium,
and we can express the heat input by the specific entropy s

dqh = T ds . (1.32)

Therefore, we may rewrite (1.31) and arrive at the fundamental law of thermodynamics

de = T ds− pdρ−1

= T ds+
p

ρ2
dρ . (1.33)

Towards acoustics, it is convenient to choose the mass density ρ and the specific entropy
s as intrinsic state variables. Hence, the specific inner energy e is completely defined by a
relation denoted as the thermal equation of state

e = e(ρ, s) . (1.34)

Therefore, variations of e are given by

de =

(
∂e

∂ρ

)
s

dρ+

(
∂e

∂s

)
ρ

ds . (1.35)

A comparison with the fundamental law of thermodynamics (1.33) provides the thermody-
namic equations for the temperature T and pressure p

T =

(
∂e

∂s

)
ρ

; p = ρ2

(
∂e

∂ρ

)
s

. (1.36)

Since p is a function of ρ and s, we may write

dp =

(
∂p

∂ρ

)
s

dρ+

(
∂p

∂s

)
ρ

ds . (1.37)

As sound is defined as isentropic (ds = 0) pressure-density perturbations, the isentropic speed
of sound is defined by

c =

√(
∂p

∂ρ

)
s

. (1.38)
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Since in many applications the fluid considered is air at ambient pressure and temperature,
we may use the ideal gas law

p = ρRT (1.39)

with the specific gas constant R, which computes for an ideal gas as

R = cp − cΩ . (1.40)

In (1.40) cp, cΩ denote the specific heat at constant pressure and constant volume, respectively.
Furthermore, the inner energy e depends for an ideal gas just on the temperature T via

de = cΩ dT . (1.41)

Substituting this relations in (1.33), assuming an isentropic state ( ds = 0) and using (1.39)
results in

cΩ dT =
p

ρ2
dρ → dT

T
=
R

cΩ

dρ

ρ
. (1.42)

dividing by p and directly using (1.39) results in

dp

p
=

dρ

ρ
+

dT

T
. (1.43)

This relation and applying (1.42), (1.40) leads to

dp

p
=

dρ

ρ
+
R

cΩ

dρ

ρ
=
cp
cΩ

dρ

ρ
= κ

dρ

ρ
(1.44)

with κ the specific heat ratio (also known as adiabatic exponent). A comparison of (1.44)
with (1.38) yields

c =
√
κp/ρ =

√
κRT . (1.45)

We see that the speed of sound c of an ideal gas depends only on the temperature. For air κ
has a value of 1.402 so that we obtain a speed of sound c at T = 15◦C of 341 m/s. For most
practical applications, we can set the speed of sound to 340 m/s within a temperature range
of 5◦C to 25◦C. Combining (1.44) and (1.45), we obtain the general pressure-density relation
for an isentropic state

dp

dt
= c2 dρ

dt
. (1.46)

Furthermore, since we use an Eulerian frame of reference, we may rewrite (1.46) by

Dp

Dt
= c2Dρ

Dt
. (1.47)

As we consider local thermodynamic equilibrium, it is reasonable to assume that transport
processes are determined by linear functions of the gradient of the flow state variables. This
corresponds to Newtonian fluid behavior expressed by

τij = 2µ εij + λεiiδij (1.48)

with the rate of the strain tensor ε

εij =
1

2

(
∂vi
∂xj

+
∂vi
∂xj

)
. (1.49)
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Note that the term εii = ∇ · v takes into account the effect of dilatation. In thermodynamic
equilibrium, the bulk viscosity λ is equal to −(2/3)µ (with µ being the dynamic viscosity)
according to the hypothesis of Stokes, and we may write

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
− 2

3
µ
∂vk
∂xk

δij . (1.50)

With this relation, we can also rewrite the divergence of the [τ ] as

∇ · [τ ] = µ

(
∇ · ∇v +

1

3
∇∇ · v

)
. (1.51)

1.4. Characterization of Flows by Dimensionless Numbers

Two flows around geometric similar models are physically similar if all characteristic numbers
coincide [4]. Especially for measurement setups, these similarity considerations are important
as it allows measuring of down sized geometries. Furthermore, the characteristic numbers are
used to classify a flow situation. The Reynolds number is defined by

Re =
vl

ν
(1.52)

with the characteristic flow velocity v, flow length l and kinematic viscosity ν. It provides the
ratio between stationary inertia forces and viscous forces. Thereby, it allows to subdivide flows
into laminar and turbulent ones. The Mach number allows for an approximative subdivision
of a flow in compressible (Ma > 0.3) and incompressible (Ma ≤ 0.3), and is defined by

Ma =
v

c
(1.53)

with c the speed of sound. In unsteady problems, periodic oscillating flow structures may
occur, e.g. the Kármán vortex street in the wake of a cylinder. The dimensionless frequency
of such an oscillation is denoted as the Strouhal number, and is defined by

St = f
l

v
(1.54)

with f the shedding frequency.

1.5. Towards Acoustics

According to the Helmholtz decomposition, the velocity vector v (as any vector field) can be
split into an irrotational part and a solenoidal part

v = ∇φ+∇×Ψ , (1.55)

where φ is a scalar potential and Ψ a vector potential. Thereby, we call a flow being purely
described by a scalar potential via

v = ∇φ

9



a potential flow. Using (1.55), mass conservation (see (1.10)) may be written as

∂ρ

∂t
+∇ · (ρv) =

∂ρ

∂t
+ v · ∇ρ+ ρ∇ · v

=
Dρ

Dt
+ ρ∇ · ∇φ+ ρ∇ · ∇ ×Ψ︸ ︷︷ ︸

=0

1

ρ

Dρ

Dt
= −∇ · ∇φ . (1.56)

This result obviously leads us to the interpretation that the flow related to the acoustic field
is an irrotational flow and that the acoustic field is the unsteady component of the gradient of
the velocity potential φ. On the other hand, taking the curl of (1.55) results in the vortivity
of the flow

ω = ∇× v = ∇×∇×Ψ +∇×∇φ = ∇×∇×Ψ . (1.57)

We see that this quantity is fully defined by the vector potential and characterizes the
solenoidal part of the flow field.

Let us consider a pulsating sphere as displayed in Fig. 1.4. Since there are no sources in

vn

a
0

Γr

Figure 1.4.: Pulsating sphere.

the fluid and we assume the fluid to be incompressible, we can model it by the Laplacian of
the scalar velocity potential

∇ · ∇φ = ∇2φ = 0 . (1.58)

Since the setup is radially symmetric, we obtain (using spherical coordinates)

∇2φ =
1

r2

∂

∂r

(
r2 ∂

∂r

)
φ = 0 ; r > a

and hence

φ =
A

r
+B .

10



We assume that φ vanishes at ∞, so B can be set to zero. Furthermore, with the boundary
condition ∂φ/∂r = vn at r = a we get

φ(t) = −a
2

r
vn(t) for r > a . (1.59)

Assuming a non-viscous fluid ([τ ] = 0), no external forces (f = 0) and neglecting the convec-
tive term, we may write the momentum conservation (see (1.24)) for an incompressible flow
by

ρ0
∂v

∂t
+∇p = 0 . (1.60)

Using the scalar potential φ, we arrive at the following linearized relation

p = −ρ0
∂φ

∂t
. (1.61)

With (1.59) we can compute the resulting pressure p to

p(t) = −ρ0
∂φ

∂t
= ρ0

a2

r

∂vn

∂t
. (1.62)

The volume flux qΩ(t) at any time computes as

qΩ(t) =

∮
Γ

∇φ · ds =

∮
Γ

∇φ · er︸ ︷︷ ︸
∂φ/∂r=vn

ds = 4πa2 vn(t) ,

and so we can rewrite (1.59) by

φ(t) = −qΩ(t)

4πr
for r > a . (1.63)

This solution also holds for r → 0 (see [5]).

1.6. Questions: Chapter 1

1. Explain the difference between the Eulerian and the Lagrangian description of physical
fields; provide at least three examples.

2. Use Reynolds transport theorem

D

Dt

∫
Ω
γ(x, t) dx =

∫
Ω

(
∂γ(x, t)

∂t

∣∣∣∣
x

+∇ · (γv)

)
dx

to arrive the conservation of mass for fluids.

3. The conservation of momentum is given by

ρ
∂v

∂t
+ ρv · ∇v = −∇p+∇ · τ + f

Rewrite this equation with Einstein’s index notation.
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4. How are insentropic and homentropic state defined?

5. When a fluid is at a thermodynamic equilibrium, we can define the state of the fluid by
two intrinsic variables. Towards acoustics, what are the two intrinsic quantities?

6. What tells us the Helmholtz decomposition? Apply it to the flow velocity and discuss
the individual terms.

7. Show that the compressibility of a flow can be described by a scalar potential.

8. What is the vorticity and how is it computed?

12



2. Acoustics

2.1. Wave equation

We assume an isentropic case, where the total variation of the entropy is zero and the pressure
is only a function of the density. For linear acoustics, this results in the well known relation
between the acoustic pressure pa and density ρa

pa = c2
0ρa (2.1)

with a constant speed of sound c0. Furthermore, the acoustic field can be seen as a pertur-
bation of the mean flow field

p = p0 + pa ; ρ = ρ0 + ρa ; v = v0 + va (2.2)

with the following relations
pa � p0 ; ρa � ρ0 . (2.3)

Furthermore, we assume the viscosity to be zero, so that the viscous stress tensor [τ ] can be
neglected, and the force density f is zero. We call ρa the acoustic density and va the acoustic
particle velocity.

For a quiescent fluid, the mean velocity v0 is zero, and furthermore we assume a spatial
and temporal constant mean density ρ0 and pressure p0. Using the perturbation ansatz (2.2)
and substituting it into (1.10) and (1.24), results in

∂(ρ0 + ρa)

∂t
+∇ ·

(
(ρ0 + ρa)va

)
= 0 (2.4)

(ρ0 + ρa)
∂va

∂t
+
(

(ρ0 + ρa)va

)
· ∇va = −∇

(
p0 + pa) . (2.5)

In a next step, since we derive linear acoustic conservation equations, we are allowed to cancel
second order terms (e.g., such as ρava), and arrive at conservation of mass and momentum

∂ρa

∂t
+ ρ0∇va = 0 (2.6)

ρ0
∂va

∂t
+∇pa = 0 . (2.7)

Applying the curl-operation to (2.7) results in

∇× ∂va

∂t
= 0 , (2.8)

which allows us to introduce the scalar acoustic potential ψa via

va = −∇ψa . (2.9)

13



Substituting (2.9) into (2.7) results in the well known relation between acoustic pressure and
scalar potential

pa = ρ0
∂ψa

∂t
. (2.10)

Now, we substitute this relation into (2.6), use (2.1) and arrive at the well known acoustic
wave equation

1

c2
0

∂2ψa

∂t2
−∆ψa = 0 . (2.11)

On the other hand, we also obtain the wave equation for the acoustic pressure pa exploring
(2.4), (2.5) and (2.1)

1

c2
0

∂2pa

∂t2
−∆pa = 0 . (2.12)

2.2. Compactness

In regions, e.g. at boundaries, where the acoustic potential ψa varies significantly over a
distance l, which is short compared to the wavelength λ, the acoustic field can be approximated
by the incompressible potential flow. We call such a region compact, and a source size much
smaller than λ is a compact source. For a precise definition, we define a typical time scale
τ (or angular frequency fc) and a length scale lc. Then, the dimensionless form of the wave
equation reads

∂2ψa

∂x̃2
i

= He2 ∂
2ψa

∂t̃2
(2.13)

with t̃ = t/τ = ωt and x̃i = xi/lc. In (2.13) He denotes the Helmholtz number and computes
by

He =
lc
c0τ

=
fclc
c0

=
2πlc
λc
� 1 .

Note that the time derivative term in (2.13) is multiplied by the square of a Helmholtz-
number. Therefore, if He is small, we may neglect this term and the wave equation reduces
to

∇ · ∇ψa = 0 . (2.14)

Hence, we can describe the acoustic field by the incompressible potential flow, which allows
us to use incompressible potential flow theory to derive the local behavior of acoustic fields
in compact regions.

2.3. Simple solutions

In order to get some physical insight in the propagation of acoustic sound, we will consider two
special cases: plane and spherical waves. Let’s start with the simpler case, the propagation
of a plane wave as displayed in Fig. 2.1. Thus, we can express the acoustic pressure by
pa = pa(x, t) and the particle velocity by va = va(x, t)ex. Using these relations together with
the linear pressure-density law (assuming constant mean density, see (2.1)), we arrive at the
following 1D linear wave equation

∂2pa

∂x2
− 1

c2
0

∂2pa

∂t2
= 0 , (2.15)
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pa = pa(x, t)

Figure 2.1.: Propagation of a plane wave.

which can be rewritten in factorized version as(
∂

∂x
− 1

c0

∂

∂t

) (
∂

∂x
+

1

c0

∂

∂t

)
pa = 0 . (2.16)

This version of the linearized, 1D wave equation motivates us to introduce the following two
functions (solution according to d’Alembert)

ξ = t− x/c0 ; η = t+ x/c0

with properties

∂

∂t
=

∂

∂ξ
+

∂

∂η
;

∂

∂x
=

1

c0

(
∂

∂η
− ∂

∂ξ

)
.

Therewith, we obtain for the factorized operator

∂

∂x
− 1

c0

∂

∂t
= − 2

c0

∂

∂ξ

∂

∂x
+

1

c0

∂

∂t
=

2

c0

∂

∂η

and the linear, 1D wave equation transfers to

− 4

c2
0

∂

∂ξ

∂

∂η
pa = 0 .

The general solution computes as a superposition of arbitrary functions of ξ and η

pa = f(ξ) + f(η) = f(t− x/c0) + g(t+ x/c0) . (2.17)

This solution describes waves moving with the speed of sound c0 in +x and −x direction,
respectively. In a next step, we use the linearized conservation of momentum according to
(2.5), and rewrite it for the 1D case (assuming zero source term)

ρ0
∂va

∂t
+
∂pa

∂x
= 0 . (2.18)

Now, we use just consider a forward propagating wave, i.e. g(t) = 0, substitute (2.17) into
(2.18) and obtain

va = − 1

ρ0

∫
∂pa

∂x
dt =

1

ρ0c0

∫
∂f(t− x/c0)

∂t
dt

=
1

ρ0c0
f(t− x/c0) =

pa

ρ0c0
. (2.19)

15



Therewith, the value of the acoustic pressure over acoustic particle velocity for a plane wave
is constant. To allow for a general orientation of the coordinate system, a free field plane
wave may be expressed by

pa = f(n · x− c0t) ; va =
n

ρ0c0
f(n · x− c0t) , (2.20)

where the direction of propagation is given by the unit vector n. A time harmonic plane wave
of angular frequency ω = 2πf is usually written as

pa , va ∼ ej(ωt−k·x) (2.21)

with the wave number (also called wave vector) k, which computes by

k = kn =
ω

c0
n . (2.22)

The second case of investigation will be a spherical wave, where we assume a point source
located at the origin. In the first step, we rewrite the linearized wave equation in spherical
coordinates and consider that the pressure pa will just depend on the radius r. Therewith,
the Laplace-operator reads as

∇ · ∇pa(r, t) =
∂2pa

∂r2
+

2

r

∂pa

∂r
=

1

r

∂2rpa

∂r2

and we obtain
1

r

∂2rpa

∂r2
− 1

c2
0

∂2pa

∂t2︸ ︷︷ ︸
1
r

∂2rpa
∂t2

= 0 . (2.23)

A multiplication of (2.23) with r results in the same wave equation as obtained for the plane
case (see (2.15)), just instead of pa we have rpa. Therefore, the solution of (2.23) reads as

pa(r, t) =
1

r
(f(t− r/c0) + g(t+ r/c0)) , (2.24)

which means that the pressure amplitude will decrease according to the distance r from
the source. The assumed symmetry requires that all quantities will just exhibit a radial
component. Therewith, we can express the time averaged acoustic intensity Iav

a in normal
direction n by a scalar value just depending on r

Iav
a · n = Iav

r

and as a function of the time averaged acoustic power P av
a of our source

Iav
r =

P av
a

4πr2
. (2.25)

According to (2.25), the acoustic intensity decreases with the squared distance from the
source. This relation is known as the spherical spreading law.
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In order to obtain the acoustic velocity va = va(r, t)er as a function of the acoustic pressure
pa, we substitute the general solution for pa (see (2.24), in which we set without loss of
generality g = 0) into the linear momentum equation (see (2.7))

∂va

∂t
= − 1

ρ0

∂pa

∂r
= − 1

ρ0

∂

∂r

(
f(t− r/c0)

r

)
va = − 1

ρ0

∂

∂r

(
F (t− r/c0)

r

)
(2.26)

with f(t) = ∂F (t)/∂t. Using the relation

∂F (t− r/c0)

∂r
= − 1

c0

∂F (t− r/c0)

∂t

and performing the differentiation with respect to r results in

va(r, t) = − 1

ρ0

1

r

∂F (t− r/c0)

∂r
+
F (t− r/c0)

ρ0r2
(2.27)

=
1

ρ0c0

1

r

∂F (t− r/c0)

∂t︸ ︷︷ ︸
f/r=pa

+
F (t− r/c0)

ρ0r2
(2.28)

=
pa

ρ0c0
+
F (t− r/c0)

ρ0r2
. (2.29)

Therewith, spherical waves show in the limit r → ∞ the same acoustic behavior as plane
waves.

Now with this acoustic velocity-pressure relation, we may rewrite the acoustic intensity for
spherical waves as

Ir =
pa

2

ρ0c0
+

pa

ρ0r2
F (t− r/c0)

With the relation (just outgoing waves)

pa =
f

r
=

1

r

∂F

∂t

we obtain

Ir =
pa

2

ρ0c0
+

1

2ρ0r3

∂F 2(t− r/c0)

∂t
,

which results for the time averaged quantity (assuming F (t − r/c) is a periodic function) in
the same expression as for the plane wave

Iav
r =

(pa
2)av

ρ0c0
.

2.4. Acoustic quantities and order of magnitudes

Let us consider a loudspeaker generating sound at a fixed frequency f and a number of
microphones recording the sound as displayed in Fig. 2.2. In a first step, we measure the
sound with one microphone fixed at x0, and we will obtain a periodic signal in time with
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λ

pa(x0, t)
pa(x, t0)

Figure 2.2.: Sound generated by a loudspeaker and measured by microphones.

the same frequency f and period time T = 1/f . In a second step, we use all microphones
and record the pressure at a fixed time t0. Drawing the obtained values along the individual
positions of the microphone, e.g. along the coordinate x, we again obtain a periodic signal,
which is now periodic in space. This periodicity is characterized by the wavelength λ and is
uniquely defined by the frequency f and the speed of sound c0 via the relation

λ =
c0

f
. (2.30)

Assuming a frequency of 1 kHz, the wavelength in air takes on the value of 0.343 m (c0 =
343 m/s).

Strictly speaking, each acoustic wave has to be considered as transient, having a beginning
and an end. However, for some long duration sound, we speak of continuous wave (cw)
propagation and we define for the acoustic pressure pa a mean square pressure (pa)2

av as well
as a root mean squared (rms) pressure pa,rms

pa,rms =

√√√√√ 1

T

t0+T∫
t0

(p− p0)2 dt =

√√√√√ 1

T

t0+T∫
t0

p2
a dt . (2.31)

In (2.31) T denotes the period time of the signal or if we cannot strictly speak of a periodic
signal, an interminable long time interval. Now, it has to be mentioned that the threshold
of hearing of an average human is at about 20µPa and the threshold of pain at about 20 Pa,
which differs 106 orders of magnitude. Thus, logarithmic scales are mainly used for acoustic
quantities. The most common one is the decibel (dB), which expresses the quantity as a ratio
relative to a reference value. Thereby, the sound pressure level Lpa

(SPL) is defined by

Lpa
= 20 log10

pa,rms

pa,ref
pa,ref = 20µPa . (2.32)

The reference pressure pa,ref corresponds to the sound at 1 kHz that an average person can
just hear.
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In addition, the acoustic intensity Ia is defined by the product of the acoustic pressure and
particle velocity

Ia = pava . (2.33)

The intensity level LIa is then defined by

LIa = 10 log10

Iav
a

Ia,ref
Ia,ref = 10−12 W/m2 , (2.34)

with Ia,ref the reference sound intensity corresponding to pa,ref. Again, we use an averaged
value for defining the intensity level, which computes by

Iav
a = |Iav

a | =

∣∣∣∣∣∣ 1

T

t0+T∫
t0

vapa dt .

∣∣∣∣∣∣ (2.35)

Finally, we compute the acoustic power by integrating the acoustic intensity (unit W/m2)
over a closed surface

Pa =

∮
Γ

Ia · ds =

∮
Γ

Ia · n ds . (2.36)

Then, the sound-power level LPa computes as

LPa = 10 log10

P av
a

Pa,ref
Pa,ref = 10−12 W , (2.37)

with Pa,ref the reference sound power corresponding to pa,ref. In Tables 2.1 and 2.2 some
typical sound pressure and sound power levels are listed.

Table 2.1.: Typical sound pressure levels SPL.

Threshold Voice Car Pneumatic hammer Jet
of hearing at 5 m at 20 m at 2 m at 3 m

0 dB 60 dB 80 dB 100 dB 140 dB

Table 2.2.: Typical sound power levels and in parentheses the absolute acoustic power Pa.

Voice Fan Loudspeaker Jet airliner

30 dB (25µW) 110 dB (0.05 W) 128 dB (60 W) 170 dB (50 kW)

A useful quantity in the acoustics is impedance, which is a measure of the amount by which
the motion induced by a pressure applied to a surface is impeded. However, a quantity that
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varies with time and depends on initial values is not of interest. Thus the specific acoustic
impedance is defined via the Fourier transform by

Ẑa(x, ω) =
p̂a(x, ω)

v̂a(x, ω) · n(x)
(2.38)

at a point x on the surface Γ with unit normal vector n. It is in general a complex number
and its real part is called resistance, its imaginary part reactance and its inverse the spe-
cific acoustic admittance denoted by Ŷa(x, ω). For a plane wave (see Sec. 2.3) the acoustic
impedance Ẑa is constant

Ẑa(x, ω) = ρ0c0 . (2.39)

For a quiescent fluid the acoustic power across a surface Γ computes for time harmonic
fields by

P av
a =

∫
Γ

 1

T

T∫
0

Re
(
p̂ae

jωt
)

Re
(
v̂a · nejωt

)
dt

 ds

=
1

4

∫
Γ

(p̂av̂
∗
a + p̂∗av̂a) · n ds

=
1

2

∫
Γ

Re (p̂∗av̂a) · n ds (2.40)

with ∗ denoting the conjugate complex. Now, we use the impedance Ẑa of the surface and
arrive at

P av
a =

1

2

∫
Γ

Re
(
Ẑa

)
|v̂a · n|2 ds . (2.41)

Hence, the real part of the impedance (equal to the resistance) is related to the energy flow.

If Re
(
Ẑa

)
> 0 the surface is passive and absorbs energy, and if Re

(
Ẑa

)
< 0 the surface is

active and produces energy.

In a next step, we analyze what happens, when an acoustic wave propagates from one fluid
medium to another one. For simplicity, we restrict to a plane wave, which is described by
(see (2.17))

pa(t) = f/t− x/c0) + g(t+ x/c0) (2.42)

In the frequency domain, we may write

p̂a = f̂ e−jωx/c0 + ĝejωx/c0 = p+ejωt−jkx + p−ejωt+jkx . (2.43)

Thereby, p+ is the amplitude of the wave incident at x = 0 from x < 0 and p− the amplitude of
the reflected wave at x = 0 by an impedance Ẑa. Using the linear conservation of momentum,
we obtain the particle velocity

v̂a(x) =
1

ρ0c0

(
p+e−jkx − p−ejkx

)
. (2.44)
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Defining the reflection coefficient R by

R =
p−

p+
, (2.45)

we arrive with Ẑa = p̂(0)/v̂(0) at

R =
Ẑa − ρ0c0

Ẑa + ρ0c0

. (2.46)

In two dimensions, we consider a plane wave with direction (cos θ, sin θ), where θ is the
angle with the y-axis and the wave approaches from y < 0 and hits an impedance Ẑ at y = 0.
The overall pressure may be expressed by

p̂a(x, y) = e−jkx sin θ
(
p+e−ky cos θ + p−ejky cos θ

)
. (2.47)

Furthermore, the y-component of the particle velocity computes to

v̂a(x, y) =
cos θ

ρ0c0
e−jkx sin θ

(
p+e−ky cos θ − p−ejky cos θ

)
. (2.48)

Thereby, the impedance is

Ẑa =
p̂(x, 0)

v̂(x, 0)
=
ρ0c0

cos θ

p+ + p−

p+ − p−
=
ρ0c0

cos θ

1 +R

1−R
(2.49)

so that the reflection coefficient computes as

R =
Ẑa cos θ − ρ0c0

Ẑa cos θ + ρ0c0

. (2.50)

2.5. Impulsive sound sources

The sound being generated by a unit, impulsive point source δ(x)δ(t) is the solution of

1

c2
0

∂2ψa

∂t2
−∇ · ∇ψa = δ(x)δ(t) (2.51)

with ψa the scalar acoustic potential. Now, since the source exists only for an infinitesimal
instant of time t = 0, the scalar potential ψa will be zero for t < 0. Due to the radially
symmetry, we may rewrite (2.51) in cylindrical coordinates for r = |x| > 0 by

1

c2
0

∂2ψa

∂t2
− 1

r2

∂

∂r

(
r2 ∂

∂r

)
ψa = 0 for r > 0 . (2.52)

According to Sec. 2.3 (see (2.24)) the solution is

ψa =
f(t− r/c0)

r
+
g(t+ r/c0)

r
. (2.53)

The first term represents a spherically symmetric wave propagating in the direction of increas-
ing values of r (outgoing wave) and the second term describes an incoming wave. Physically,
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we have to set g to zero, since according to causality (also known as the radiation condition)
sound produced by a source must radiate away from this source.

To complete the solution, we have to determine the function f , which results in (see [5])

f(t− r/c0) =
1

4π
δ(t− r/c0) (2.54)

and the solution becomes

ψa(x, t) =
1

4πr
δ(t− r/c0) =

1

4π|x|
δ(t− |x|/c0) . (2.55)

This represents a spherical pulse that is nonzero only on the surface of the sphere with
r = c0t > 0, whose radius increases with the speed of sound c0. It clearly vanishes everywhere
for t < 0. Compared to the solution of a potential flow generated by a pulsating sphere (see
Sec. 1.5) we have as an argument the retarded time.

2.6. Free space Green’s functions

The free-space Green’s function G(x,y, t − τ) is the causal solution of the wave equation by
an impulsive point source with strength δ(x−y)δ(t− τ) located at x = y at time t = τ . The
expression for G is simply obtained from (2.55), when we replace the source position x = 0
at time t = 0 by x− y at t− τ . This substitutions result in(

1

c2
0

∂2

∂t2
−∇ · ∇

)
G = δ(x− y)δ(t− τ) where G = 0 for t < τ (2.56)

with

G(x,y, t) =
1

4π|x− y|
δ

(
t− τ − |x− y|

c0

)
. (2.57)

This describes an impulsive, spherical symmetric wave expanding from the source at y (there-
fore y are called the source coordinates) with the speed of sound c0. The wave amplitude
decreases inversely with the distance to the observation point x.

Now, Green’s function is the fundamental building block for the computation of the inho-
mogeneous wave equation with any generalized source distribution F(x, t)(

1

c2
0

∂2

∂t2
−∇ · ∇

)
pa = F(x, t) . (2.58)

The key idea is that the source distribution is regarded as a distribution of impulsive point
sources

F(x, t) =

T∫
0

∞∫
−∞

F(y, τ)δ(x− y)δ(t− τ) dy dτ .

Therefore, the outgoing wave solution for each constituent source strength

F(y, τ)δ(x− y)δ(t− τ)

is given by
F(y, τ)G(x,y, t) .
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Therefore, the overall solution is obtained by adding up all the individual contributions

pa(x, t) =

T∫
0

∞∫
−∞

F(y, τ)G(x,y, t) dy dτ

=
1

4π

T∫
0

∞∫
−∞

F(y, τ)

|x− y|
δ

(
t− τ − |x− y|

c0

)
dy dτ

=
1

4π

∞∫
−∞

F
(
y, t− |x−y|c0

)
|x− y|

dy . (2.59)

This integral formula is called a retarded formula, since it represents the pressure at position
x (observation point) and time t as a linear superposition of sources at y radiated at earlier
times t − |x − y|/c0. Thereby, the time of travel for the sound waves from the source point
y to the observer point x is |x− y|/c0.

In general, finding a (tailored) Green’s function of given configuration (including, e.g.,
scatterer) is only marginally easier than the full solution of the inhomogeneous wave equa-
tion.Therefore, it is not possible to give a general recipe. However, it is important to note
that often we can simplify a problem already by the corresponding integral formulation (as
done above) using free field Green’s function. Furthermore, the delta-function source may be
rendered into a more easily treated from by spatial Fourier transform. Thereby, (2.57) leads
to the free field Green’s function in the frequency domain (setting τ = 0)

Ĝ(x, ω) =

∞∫
−∞

1

4π|x− y|
δ

(
t− |x− y|

c0

)
e−jωt dt

=
e−jkr

4πr
(2.60)

with r = |x− y| and k = ω/c0.

2.7. Monopoles, dipoles and quadrupoles

A volume point source q(t)δ(x) as a model of a pulsating sphere (as considered in Sec. 1.5) is
called a monopole point source. Now, we consider a compressible fluid and the corresponding
wave equation (

1

c0

∂2

∂t2
−∇ · ∇

)
ψa = q(t)δ(x) .

The solution can be simply obtained by using (2.59), replacing pa by ψa and setting F(y, τ) =
q(τ)δ(y)

ψa(x, t) =
q(t− |x|/c0)

4π|x|
=
q(t− r/c0)

4πr
. (2.61)

This differs from the solution obtained within an incompressible fluid (see (1.63)) by the
dependence on the retarded time t − r/c0. Any change at the source is now communicated
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to a fluid element at distance r after an appropriate estimated delay r/c0 required for sound
to travel outward from the source.

In a next step, we will investigate in a point dipole. Then, a source on the right hand side
of the wave equation (2.58) of the following type

F(x, t) = ∇ · (f(t)δ(x)) =
∂

∂xj
(fj(t)δ(x)) (2.62)

is called a point dipole located at the origin. The sound generated by such a source computes
according to (2.59)

pa(x, t) =
1

4π

T∫
0

∞∫
−∞

∂

∂yj
(fj(τ)δ(y))

δ
(
t− τ − |x−y|c0

)
|x− y|

dy dτ . (2.63)

In a first step, we perform an integration by parts and arrive at

pa(x, t) = − 1

4π

T∫
0

∞∫
−∞

fj(τ)δ(y)
∂

∂yj

δ
(
t− τ − |x−y|c0

)
|x− y|

 dy dτ

+
1

4π

T∫
0

∫
Γ

(fj(τ)δ(y))
δ
(
t− τ − |x−y|c0

)
|x− y|

n · ej dsdτ . (2.64)

Thereby the second integral has to be evaluated at a surface for which yj = ±∞, so that due
to the property of the delta function δ(y) = 0 at yj = ±∞, it vanishes. Furthermore, we
explore the relation

∂

∂yj

δ
(
t− τ − |x−y|c0

)
|x− y|

 = − ∂

∂xj

δ
(
t− τ − |x−y|c0

)
|x− y|

 ,

and arrive at

pa(x, t) =
1

4π

T∫
0

∞∫
−∞

fj(τ)δ(y)
∂

∂xj

δ
(
t− τ − |x−y|c0

)
|x− y|

 dy dτ

=
1

4π

∂

∂xj

T∫
0

∞∫
−∞

fj(τ)δ(y)
δ
(
t− τ − |x−y|c0

)
|x− y|

dy dτ . (2.65)

Due to the property of the delta function, we can directly obtain the solution for the acoustic
pressure by

pa(x, t) =
∂

∂xj

(
fj(t− |x|/c0)

4π|x|

)
. (2.66)

Therefore, a distributed dipole source F(x, t) = ∇ ·f(x, t) results in the following expression
for the acoustic pressure

pa(x, t) =
1

4π

∂

∂xj

∞∫
−∞

fj(y, t− |x− y|/c0)

|x− y|
dy . (2.67)
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A point dipole at the origin oriented in the direction of the unit vector n is entirely equiv-
alent to two point monopoles of equal but opposite strengths placed a short distance apart
(much smaller as the wavelength). Furthermore, a combination of four monopole sources,
whose net volume source strength is zero, is called a quadrupole. A general quadrupole is a
source distribution being characterized by a second space derivative of the form

F(x, t) =
∂2Lij
∂xi∂xj

. (2.68)

Here, Lij are the components of an arbitrary tensor. In the context of aeroacoustics, [L] will
denote the Lighthill tensor (see Sec. 3.1). Applying the procedure as in the case of the dipole
source two times results in the corresponding acoustic pressure

pa(x, t) =
1

4π

∂2

∂xi∂xj

∞∫
−∞

Lij(y, t− |x− y|/c0)

|x− y|
dy . (2.69)

2.8. Calculation of acoustic far field

We will now discuss useful approximations for the evaluation of the retarded potential for-
mulation

pa(x, t) =
1

4π

∞∫
−∞

F
(
y, t− |x−y|c0

)
|x− y|

dy , (2.70)

when computing the sound in the far field. Thereby, as mostly true for practical applications,
we assume that F(x, t) is nonzero only in a finite source region, as displayed in Fig. 2.3.
Furthermore, the source region contains the origin O of the coordinate system. In a first step,

x
path from y

path from 0

y

A

x.y

source regionx

0

Figure 2.3.: Acoustic far field calculation.
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we assume |x| � |y|, so that the following approximation will hold

|x− y| =
(
|x|2 − 2x · y + |y|2

) 1
2

= |x|
(

1− 2x · y
|x|2

+
|y|2

|x|2

) 1
2

≈ |x|
(

1− 2x · y
|x|2

) 1
2

≈ |x| − x · y
|x|

for
|y|
|x|
� 1 . (2.71)

In a second step, we investigate in the term 1/|x− y| using the above result

1

|x− y|
≈ 1

|x| − x·y
|x|

=
1

|x|

(
1

1− x·y
|x|2

)
(2.72)

Now, we develop the term in the parenthesis in a Taylor series up to first order and arrive at

1

|x− y|
≈ 1

|x|

(
1 +

x · y
|x|2

)
=

1

|x|
+
x · y
|x|3

.

This approximation demonstrates that in order to obtain the far field approximation of (2.70),
which solution behaves like 1/r = 1/|x| as |x| → ∞, it is sufficient to replace |x − y| in the
denominator of the integrand by |x|. However, in the argument of the source strength F it
is important to retain possible phase differences between the sound waves generated by the
source distribution at location y. Therefore, we replace |x − y| in the source argument by
the approximation obtained in (2.71) and arrive at

pa(x, t) ≈ 1

4π|x|

∞∫
−∞

F
(
y, t− |x|

c0
+
x · y
c0|x|

)
dy , |x| → ∞ . (2.73)

This approximation when computing the acoustic far field is known as Fraunhofer approxima-
tion. The source region may extend over many characteristic wavelengths of the sound. By
retaining the contribution x · y/(c0|x|) to the retarded time, we ensure that the interference
between waves generated at different positions within the source region is correctly described
by this far-field approximation. Let’s consider the setup as displayed in Fig. 2.3. The acoustic
travel time from a source point y to a far-field point x is equal to that from the point labeled
by A to x when x goes to infinity. The travel time over the distance OA computes by

tOA =
1

c0
y · ex =

1

c0
y · x
|x|

.

Therefore, the time obtained by |x|/c0−x ·y/(c0|x|) is the correct value of the retarded time
when x goes to infinity.

Let’s apply the above approximation for a dipole source distribution. In doing so, we use
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the far-field formula according to (2.73) to a dipole source F(x, t) = ∇ · f(x, t) and obtain

pa(x, t) ≈ 1

4π

∂

∂xj

 1

|x|

∞∫
−∞

fj

(
y, t− |x|

c0
+
x · y
c0|x|

)
dy


=

1

4π|x|
∂

∂xj

 ∞∫
−∞

fj

(
y, t− |x|

c0
+
x · y
c0|x|

)
dy


− 1

4π

xj
|x|3

 ∞∫
−∞

fj

(
y, t− |x|

c0
+
x · y
c0|x|

)
dy

 (2.74)

Since the second term decreases at least with a factor of 1/r2, we can neglect it for our far-
field approximation. In a last step we will replace the space derivative with a time derivative,
which is usually more easily estimated in practical applications. This operation is done as
follows

∂

∂xj
fj

(
y, t− |x|

c0
+
x · y
c0|x|

)
=

∂fj
∂t

∂

∂xj

(
t− |x|

c0
+
x · y
c0|x|

)
.

Now, the second term evaluates as

∂

∂xj

(
t− |x|

c0
+
x · y
c0|x|

)
= − 1

c0

∂|x|
∂xj

+
1

c0

∂

∂xj

(
x · y
|x|

)
= − 1

c0

xj
|x|

+
1

c0

yj |x| − x · y xj |x|−1

|x|2

= − 1

c0

xj
|x|

+
yj
c0|x|

− x · y xj
|x|3

≈ − 1

c0

xj
|x|

for |y| � |x| .

Collecting these results, we can provide the far-field approximation for a source dipole F = ∇·
f(x, t) as follows (canceling all terms which are proportional to 1/|x|2 as well as x ·y xj/|x|4)

pa(x, t) ≈ −xj
4πc0|x|2

∂

∂t

 ∞∫
−∞

fj

(
y, t− |x|

c0
+
x · y
c0|x|

)
dy

 (2.75)

Please note that the term
xj
|x|2

=
xj
|x|

1

|x|
=
xj
|x|

1

r

is not changing the rate of the amplitude decay, which is still given by 1/r. The first term
xj/|x| is the jth component of the unit vector x/|x| and so it does just influence the directivity
pattern (see Fig. 2.4 for the directivity of a dipole).

Furthermore, it is necessary to realize that the rule of interchanging a space derivative with
a time derivative is given by

∂

∂xj
≈ − 1

c0

xj
|x|

∂

∂t
. (2.76)
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r

x1

x2

Figure 2.4.: Directivity of a dipole source. The plotted directivity is ∝ p2 (proportional to
the intensity).

We will now explore this relation, when deriving the far-field approximation for a quadrupole
source given by

F(x, t) =
∂2Lij(x, t)

∂xi∂xj
. (2.77)

According to (2.76) we directly arrive at

pa(x, t) ≈ xixj
4πc0|x|3

∂2

∂t2

 ∞∫
−∞

Lij

(
y, t− |x|

c0
+
x · y
c0|x|

)
dy

 (2.78)

Now, for a point quadrupole in the x1-x2 plane

x2

x1

r

(1, 2)-quadrupole directivity

Figure 2.5.: Directivity of a quadrupole source: radiation in the x1-x2 plane (ϕ = 0, π).

F(x, t) =
∂2

∂x1∂x2
(L(t)δ(x))

we obtain by exploring (2.78) the following far-field pressure

pa(x, t) ≈ x1x2

4πc0|x|3
∂2

∂t2
L

(
t− |x|

c0

)
x→∞ . (2.79)
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If we use spherical coordinates, such that

x1 = r cosϑ ; x2 = r sinϑ cosϕ ; x3 = r sinϑ cosϕ

we may rewrite the pressure by

pa(x, t) ≈ sin 2ϑ cosϕ

8πc0|x|
∂2

∂t2
L

(
t− |x|

c0

)
x→∞ . (2.80)

The directivity pattern of the sound intensity, which is given by ∝ (pa)2, is therefore repre-
sented by sin2 2ϑ cos2 ϕ. Its shape is displayed in Fig. 2.5.

2.9. Questions: Chapter 2

1. Derive conservation equations for linear acoustics (isentropic case) with a background
flow by using the following perturbation ansatz

pa = p− p0 ; ρa = ρ− ρ0 ;va = v − v0 .

Assume that the mean quantities p0, ρ0 do not depend on space and time and that the
mean velocity v0 does not depend on time.

2. Apply the perturbation ansatz

p(t) = pa(t) + p0 ; ρ(t) = ρa(t) + ρ0 ; v(t) = va(t)

to (1.47) and determine by neglecting second order terms the relation between pa and
ρa. Under which consitions you obtain

pa = c2ρa .

3. Provide the free space Green’s functions and discuss its property!

4. Explain the idea how the acoustic pressure at an observer point x can be computed for
any source distribution.

5. How does the source distributions look like for a monopole, dipole as well as quadrupole?

6. Explain the Fraunhofer approximation for the computation of the acoustic pressure!

7. Show that for the far field the following approximation is valid

∂

∂xj
fj

(
y, t− |x|

c0
+
x · y
c0|x|

)
≈ 1

c0

xj
|x|

∂

∂t
fj

(
y, t− |x|

c0
+
x · y
c0|x|

)
8. Assume a plane wave in air at ambient temperature with an acoustic SPL of 90 dB.

Compute the acoustic density, the acoustic particle velocity, the acoustic intensity and
the acoustic power (for a surface of 1 m2). Provide the results both in their physical
units as well as in decibel (dB).
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9. We assume a breathing sphere of radius R = 0.1 m. At a distance of 5 m, an SPL of
80 dB at 1 kHz is measured. Compute the acoustic intensity as well as the total acoustic
power radiated by the vibrating sphere.

10. Which conditions have to be fulfilled for a region to be acoustically compact? For
such an case, the acoustic wave equation can be simplified to which one? Explain the
procedure.
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3. Aeroacoustics

3.1. Lighthill’s Acoustic Analogy

The sound generated by a flow in an unbounded fluid is usually called aerodynamic sound.
Most unsteady flows in technical applications are of high Reynolds number, and the acoustic
radiation is a very small by-product of the motion. Thereby, the turbulence is usually pro-
duced by fluid motion over a solid body and/or by flow instabilities. Lighthill transformed
the general equations of mass and momentum conservation to an exact inhomogeneous wave
equation whose source terms are important only within the turbulent region [6, 7].

Lighthill was initially interested in solving the problem, illustrated in Fig. 3.1a, of the
sound produced by a turbulent nozzle and arrived at the inhomogeneous wave equation.
However, at this time a volume discretization by numerical schemes was not feasible and so a

sound

turbulent nozzle flow

v

(a) Turbulent nozzle flow.

sound

(b) Isolated turbulent region.

Figure 3.1.: Sound generation by turbulent flows.

transformation of the PDE into an integral representation was performed, which can just be
achieved for a free field setup, for which Green’s function is available. Therefore, Lighthill’s
theory in its integral formulation just applies to the simple situation as given in Fig. 3.1b.
This avoids complications caused by the presence of the nozzle. The fluid is assumed to
be at rest at the observer position, where a mean pressure, density and speed of sound are
respectively equal to p0, ρ0 and c0. So Lighthill compared the equations for the production of
density fluctuations in the real flow with those in an ideal linear acoustic medium (quiescent
fluid).

For the derivation, we start at Reynolds form of the momentum equation, as given by (1.18)
neglecting any force density f

∂ρv

∂t
+∇ · [π] = 0 , (3.1)

with the momentum flux tensor πij = ρvivj + (p− p0)δij − τij , where the constant pressure p0

is inserted for convenience. In an ideal, linear acoustic medium, the momentum flux tensor
contains only the pressure

πij → π0
ij = (p− p0)δij = c2

0(ρ− ρ0)δij (3.2)
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and Reynolds momentum equation reduces to

∂ρvi
∂t

+
∂

∂xi

(
c2

0(ρ− ρ0)
)

= 0 . (3.3)

Rewriting the conservation of mass in the form

∂

∂t
(ρ− ρ0) +

∂ρvi
∂xi

= 0 (3.4)

allows us to eliminate the momentum density ρvi in (3.3). Therefore, we perform a time
derivative on (3.4), a spatial derivative on (3.3) and substract the two resulting equations.
These operations leads to the equation of linear acoustics satisfied by the perturbation density(

1

c2
0

∂2

∂t2
−∇ · ∇

)(
c2

0(ρ− ρ0)
)

= 0 . (3.5)

Because flow is neglected, the unique solution of this equation satisfying the radiation condi-
tion and we obtain ρ− ρ0 = 0.

Now, it can be asserted that the sound generated by the turbulence in the real fluid is
exactly equivalent to that produced in the ideal, stationary acoustic medium forced by the
stress distribution

Lij = πij − π0
ij = ρvivj +

(
(p− p0)− c2

0(ρ− ρ0)
)
δij − τij , (3.6)

where [L] is called the Lighthill stress tensor.
Indeed, we can rewrite (3.1) as the momentum equation for an ideal, stationary acoustic

medium of mean density ρ0 and speed of sound c0 subjected to the externally applied stress
Lij

∂ρvi
∂t

+
∂π0

ij

∂xj
= − ∂

∂xj

(
πij − π0

ij

)
, (3.7)

or equivalent

∂ρvi
∂t

+
∂

∂xj

(
c2

0(ρ− ρ0)
)

= −∂Lij
∂xj

. (3.8)

By eliminating the momentum density ρvi using (3.4) we arrive at Lighthill’s equation(
1

c2
0

∂2

∂t2
−∇ · ∇

)(
c2

0(ρ− ρ0)
)

=
∂2Lij
∂xi∂xj

. (3.9)

It has to be noted that (ρ− ρ0) = ρ′ is a fluctuating density not being equal to the acoustic
density ρa, but a superposition of flow and acoustic parts within flow regions.

The problem of calculating the flow generated sound is equivalent to solving this wave
equation, which is possible when the source term ∂2Lij/∂xi∂xj is provided, e.g., by a CFD
computation. This type of source term can be interpreted as a quadrupole term. Therefore,
the free field turbulence is an extremely weak sound source, and so in low Mach number flows
just a very small portion of the flow energy is converted into sound. However, in the presence
of walls the sound radiation by turbulence can be dramatically enhanced. In the next section,
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we will see that compact bodies will radiate a dipole sound field associated to the force which
they exert on the flow as a reaction to the dynamic force of the flow applied to them. Sharp
edges are particularly efficient radiators.

In the definition of the Lighthill tensor according to (3.6) the term ρvivj is called the
Reynolds stress. It is a nonlinear term and can be neglected except where the motion is tur-
bulent. The second term

(
(p− p0)− c2

0(ρ− ρ0)
)
δij represents the excess of moment transfer

by the pressure over that in the ideal fluid of density ρ0 and speed of sound c0. This is
produced by wave amplitude nonlinearity, and by mean density variations in the source flow.
The viscous stress tensor τij properly accounts for the attenuation of the sound. In most
applications the Reynolds number in the source region is high and we can neglect this con-
tribution.

The solution of (3.9) for free field radiation condition with outgoing wave behavior can be
rewritten in integral form as follows (see sec. 2.7)

c2
0(ρ− ρ0)(x, t) =

1

4π

∂2

∂xi∂xj

∞∫
−∞

Lij(y, t− |x− y|/c0)

|x− y|
dy . (3.10)

Thereby, y defines the source coordinate and x the coordinate at which we compute the
acoustic density fluctuation. This provides a useful prediction of the sound, if Lij is known.
Please note that the terms in Lij not only account for the generation of sound, but also
includes acoustic self modulation caused by

� acoustic nonlinearity,

� the convection of sound waves by the turbulent flow velocity,

� refraction caused by sound speed variations,

� and attenuation due to thermal and viscous actions.

The influence of acoustic nonlinearity and thermoviscous dissipation is usually sufficiently
small to be neglected within the source region. Convection and refraction of sound within
the flow region can be important, e.g., in the presence of a mean shear layer (when the
Reynolds stress will include terms like ρv0iv

′
j , where v0 and v′ respectively denote the mean

and fluctuating components of v). Such effects are described by the presence of unsteady
linear terms in Lij . Furthermore, since for practical applications the source term is obtained
by numerically solving Navier-Stokes equation, the question of how accurate the source term
is resolved, is always present.

Now, let’s consider the situation for which the mean density and speed of sound are uni-
form throughout the fluid. The variations in the density ρ within a low Mach number, high
Reynolds number source flow are then of orderO(ρ0Ma2). Thus, ρvivj = ρ0

(
1 +O(Ma2)

)
vivj ≈

ρ0vivj . Furthermore, if c(x, t) is the local speed of sound in the source region, it can be shown
that c2

0/c
2 = 1 +O(Ma2), so that we obtain

p− p0 − c2
0(ρ− ρ0) = (p− p0)(1− c2

0

ρ− ρ0

p− p0︸ ︷︷ ︸
1/c2

) ≈ (p− p0)(1− c2
0/c

2) ∼ O(ρ0v
2Ma2) . (3.11)
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Therefore, if viscous dissipation is neglected, we may approximate the Lighthill tensor by

Lij ≈ ρ0vivj for Ma2 � 1 . (3.12)

Please note that with this assumptions, the divergence of (1.18) provides the following equiv-
alence (assuming an incompressible flow ∇ · v = 0 and f = 0)

∇ · ∇pic = −ρ0
∂2vivj
∂xi∂xj

(3.13)

with the incompressible flow pressure pic. With this result we obtain for the pressure fluctu-
ation using the isentropic pressure-density relation the following integral representation

p′(x, t) ≈ ∂2

∂xi∂xj

∫
ρ0vivj(y, t− |x− y|/c0)

4π|x− y|
dy (3.14)

≈ xixj
4πc2

0|x|3
∂2

∂t2

∫
ρ0vivj

(
y, t− |x|

c0
+
x · y
c0|x|

)
dy . (3.15)

To obtain (3.15), we have used the far field approximation, which allows the following substi-
tution (see Sec. 2.8)

∂

∂xj
≈ − 1

c0

xj
|x|

∂

∂t
. (3.16)

Now, we want to derive the order of the magnitude of the acoustic pressure as a function of
the flow velocity v. In doing so, we introduce a characteristic velocity v and length scale l of
a single vortex as displayed in Fig. 3.2. Fluctuations in vivj occurring in different turbulent

vortex

turbulent
source region

Ω f

l

x

Figure 3.2.: Single vortex in a turbulent flow region at its acoustic radiation towards the far
field.

regions by distances larger than O(l) will be treated to be statistically independent. So the
sound may be considered to be generated by a collection of Ω f/l

3 independent vortices. The
characteristic frequency of the turbulent fluctuations can be estimated by f ∼ v/l so that the
wavelength λ of sound will result in

λ =
c0

f
∼ c0l

v
=

l

Ma
� l for Ma = v/c0 � 1 .
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Hence, we arrive at the quite important conclusion that the turbulent vortices are all acousti-
cally compact. This means that in the relation (3.15) the retarded time variation x ·y/(c0|x|)
can be neglected. Therefore, the value of the integral over one source vortex in (3.15) can be
estimated to be of order ρ0v

2l3. The order of the magnitude for the time derivative in (3.15)
is estimated to be

∂

∂t
∼ v

l
.

Collecting all this estimates, we may now state that the acoustic pressure in the far-field,
generated by one vortex, satisfies

pa ∼
l

|x|
ρ0v

4

c2
0

=
l

|x|
ρ0v

2Ma2 . (3.17)

The acoustic power defined by

Pa =

∮
Γ

pava · ds =

∮
Γ

pava · n ds (3.18)

can be computed in the far-field with the relation va · n = pa/(ρ0c0) as follows

Pa =

∮
Γ

pa
2

ρ0c0
ds . (3.19)

This formula allows us to estimate the acoustic power generated by one vortex

Pa ∼ 4π|x|2 pa
2

ρ0c0
∼ l2ρ0v

8

c5
0

= ρ0 l
2 v3 Ma5 . (3.20)

This is the famous eighth power law.

3.2. Curle’s Theory

The main restriction of Lighthill’s integral formulation is that it can just consider free ra-
diation. Therewith, it can not consider situations where there is any solid body within the
region. In [8] this problem was solved by deriving an integral formulation for the sound gen-
erated by turbulence in the vicinity of an arbitrary, fixed surface Γs as displayed in Fig. 3.3a.
Thereby the surface Γs is defined by the function f(x), which has the following property (see
Fig. 3.3b).

f(x) =


0 for x on Γs

< 0 for x within the surface
> 0 for x in Ω .

This surface may either be a solid body, or just an artificial control surface used to isolate a
fixed region of space containing both solid bodies and fluid or just fluid.

To derive Curle’s equation we start with the momentum equation according to (3.8) and
multiply it with the Heaviside function H(f)

H(f)
∂ρvi
∂t

+H(f)
∂

∂xi

(
c2

0(ρ− ρ0)
)

= −H(f)
∂Lij
∂xj

. (3.21)
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0

Ω
dΓ

Γs

Lij 6= 0

(a) Turbulent source region with solid body.

f < 0

f > 0

Γs(f = 0)

Ω

n

(b) Solid body.

Figure 3.3.: Setup for deriving Curle’s equation.

Now, we use the product rule for differentiation (noting that the time derivative of the Heav-
iside function, which just depends on space, is zero) and obtain by also writing Lij by its
individual components

∂

∂t
(ρviH(f)) +

∂

∂xj

(
c2

0(ρ− ρ0)H(f)
)
− c2

0(ρ− ρ0)
∂H(f)

∂xi
(3.22)

= − ∂

∂xj
(LijH(f)) +

(
ρvivj +

(
(p− p0)− c2

0(ρ− ρ0)
)
δij − τij

)︸ ︷︷ ︸
Lij

∂H(f)

∂xj
.

We can cancel out the term c2
0(ρ − ρ0) ∂H(f)/∂xi being at both sides of the equation and

arrive at

∂

∂t
(ρviH(f)) +

∂

∂xj

(
c2

0(ρ− ρ0)H(f)
)

= − ∂

∂xj
(LijH(f)) + (ρvivj + (p− p0) δij − τij)

∂H(f)

∂xj
. (3.23)

The same procedure is now applied to the mass conservation according to (3.4) and so we
obtain

∂

∂t
((ρ− ρ0)H(f)) +

∂

∂xi
(ρviH(f))− ρvi

∂H(f)

∂xi
= 0 . (3.24)

Now, we perform a time derivative to this equation and rearrange it for ρviH(f)

∂2

∂t∂xi
(ρviH(f)) =

∂

∂t

(
ρvi

∂H(f)

∂xi

)
− ∂2

∂t2
((ρ− ρ0)H(f)) . (3.25)

In a last step, we apply the divergence operation to (3.23) and substitute the expression for

36



ρviH(f) from (3.25)(
1

c2
0

∂2

∂t2
− ∇ · ∇

) (
c2

0(ρ− ρ0)H(f)
)

(3.26)

=
∂2LijH(f)

∂xi∂xj

− ∂

∂xi

(
(ρvivj + (p− p0)δij − τij)

∂H(f)

∂xj

)
+

∂

∂t

(
ρvj

∂H(f)

∂xj

)
.

This equation is now valid throughout the space, including the region enclosed by Γs. Further-
more, compared to Lighthill’s equation, we have obtained two additional terms on the right
hand side of the wave equation including space derivatives of the Heaviside function H(f).
Thereby, according to our previous investigation the second term on the right hand side
corresponds to a dipole and the third term to a monopole with the following interpretation:

� Γs is the boundary of a solid body:
In this case the surface dipole represents the production of sound by the unsteady force
that the body exerts on the exterior fluid, whereas the monopole is responsible for the
sound generated by volume pulsations (if any) of the body.

� Γs is just an artificial control surface:
The dipole and monopole sources account for the presence of solid bodies and turbu-
lences within Γs (when Lij is different from zero in Γs) and also for the interaction of
sound generated outside Γs with the fluid and solid bodies inside Γs.

To transform (3.26) to the corresponding integral representation is a straight forward op-
eration. According to the wave equation and its integral representation we obtain for the
monopole term

1

4π

∞∫
−∞

∂

∂t
〈ρvj〉

∂H(f)

∂yj

1

|x− y|
dy , (3.27)

where 〈 〉 indicates that the term has to be evaluated at (y, t − |x − y|/c0). For the dipole
term we obtain the following integral representation

1

4π

∂

∂xi

∞∫
−∞

〈ρvivj + (p− p0)δij − τij〉
∂H(f)

∂yj

1

|x− y|
dy . (3.28)

The last step is the handling of the Heaviside function, which has according to generalized
function theory the following property for an arbitrary smooth function Φ(x) [5]

∞∫
−∞

Φ(y)
∂H(f)

∂yj
dy =

∮
Γs

Φ(y)nj ds =

∮
Γs

Φ(y) dsj . (3.29)
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Exploring this property, we finally arrive at Curle’s equation in integral form

c2
0(ρ− ρ0)H(f) =

∂2

∂xi∂xj

∫
Ω

〈Lij〉
4π|x− y|

dy

− ∂

∂xi

∮
Γs

〈ρvivj + (p− p0)δij − τij〉
4π|x− y|

dsj(y)

+
∂

∂t

∮
Γs

〈ρvj〉
4π|x− y|

dsj(y) . (3.30)

Now, let us restrict to a rigid body for which the flow velocity in normal direction on this
body is zero, so that (3.30) reduces to

c2
0(ρ− ρ0)H(f) =

∂2

∂xi∂xj

∫
Ω

〈Lij〉
4π|x− y|

dy

− ∂

∂xi

∮
Γs

〈(p− p0)δij − τij〉
4π|x− y|

dsj(y) . (3.31)

Furthermore, we assume the body to be acoustically compact, which means that Ma = v/c0 �
1. In the following investigation, we want to estimate the order of the sound generation by
the dipole term. With the characteristic velocity v and scale length l of a vortex, we have the
following relations

(p− p0) ∼ ρ0v
2 ; τ ∼ µ f

v

l
. (3.32)

Therefore, we can compute the ratio

p− p0

τ
∼ ρ0vl

µ f
=
vl

ν f

with ν f = µ f/ρ0 the kinematic viscosity, which is just the definition of the Reynolds number
Re = vl/ν f . Since in turbulent flows Re is quite high, we can neglect the viscous contribution.
In the far-field, the acoustic pressure pa is equal to c2

0(ρ−ρ0)H(f) (H(f) is there just 1), and
exploring the compactness which allows us to neglect the retarded time variation x ·y/(c0|x|)
results for the second term in (3.31) using (3.16) in

pa ≈
xi

4πc0|x|2
∂

∂t

∮
Γs

(p− p0)

(
y, t− |x|

c0

)
dsi =

xi
4πc0|x|2

∂Fi
∂t

(
t− |x|

c0

)
(3.33)

with F the total unsteady surface force. For a surface element with a diameter of l, the
contribution to the acoustic pressure pa can be estimated by

1

c0|x|
v

l
ρ0v

2l2 =
l

|x|
ρ0v

2Ma . (3.34)

Assuming to have Γs/l
2 independently radiating surface elements, we can estimate the acoustic

power (see also (3.20))

Pa ∼ 4π|x|2 pa
2

ρ0c0

Γs

l2
=

(
4π|x|2 l2

ρ0c0|x|2
ρ2

0v
4Ma2

)
Γs

l2

∼ ρ0Γsv
3Ma3 . (3.35)
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So, we see that in case of a dipole we arrive at a sixth power law and compared to the
quadrupole we have a factor of 1/Ma2 being stronger.

Therefore, we can summarize that Lighthills’ inhomogeneous wave equation is a quite gen-
eral model to describe flow-induced sound. Solving this partial differential equation by a
volume discretization method includes all sources of the sound. The additional source terms,
as given in (3.30) just come up, because the partial differential equation is converted to an
integral representation for which Greens’ function is needed. Furthermore, the solution is a
fluctuating pressure (density), which approaches the acoustic pressure (density) outside the
flow region.

3.3. Vortex Sound

Restricting to low Mach number flows and neglecting combustion and entropy sources of
sound, we arrive at the classical theory of vortex sound [5]. For a real fluid, we may decompose
the flow velocity v according to Helmholtz by

v = ∇×ψ +∇φ = vic +∇φ , (3.36)

where vic contains the solenoidal part of the flow velocity v and has the property ∇ · vic = 0
(defines the incompressible part of v). Furthermore, φ denotes the scalar velocity potential
and ψ the vector potential.Thereby, the vorticity ω is defined by

ω = ∇× v = ∇× vic . (3.37)

Knowing v, we can compute the scalar potential by

∇ · ∇φ = ∇ · v −∇ · ∇ ×ψ = ∇ · v , (3.38)

and by taking the curl, we obtain for the vector potential

∇×∇×ψ = ∇× v −∇×∇φ = ω . (3.39)

Furthermore, by using the vector identity

∇ · ∇ψ = ∇∇ ·ψ −∇×∇×ψ

we may write
∇ · ∇ψ = −ω . (3.40)

To find φ we can take φ = 0 at infinity. To obtain ψ we can use Green’s function for the
Laplace equation and arrive at

ψ(x) =

∫
Ω

ω(y)

4π|x− y|
dy . (3.41)

On the other hand, knowing the vorticity ω, we may compute the incompressible velocity by

vic = ∇x ×
∫
Ω

ω(y)

4π|x− y|
dy =

∫
Ω

(y − x)× ω(y)

4π|x− y|3
dy , (3.42)
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which is a pure kinematic relation. Now, because vorticity is transported by convection and
diffusion, an initially confined region of vorticity will tend to remain within a bounded body,
so that it may be assumed that ω → 0 as |x| → ∞ with O(1/|x|3) [5].

Furthermore, by assuming constant density ρ0 the main part of Lighthills’ source term for
low Mach number flows may be rewritten by

ρ0
∂2vic,ivic,j

∂xi∂xj
= ρ0∇ · (ω × vic) + ρ0∇ · ∇

(
1

2
vic · vic

)
. (3.43)

So, the overall fluctuating pressure can be seen as a superposition obtained by the two source
terms

p′(x, t) = p′1 (ρ0∇ · (ω × vic)) + p′2

(
ρ0∇ · ∇

(
1

2
vic · vic

))
.

As shown in [5], one can derive the following estimates for the far field

pa1 ∼ l

|x|
ρ0u

2Ma2 (3.44)

pa2 ∼ l

|x|
ρ0u

2Ma4 +
l

|x|
ρ0u

2Ma2

Re
. (3.45)

Therefore, we can state pa2 � pa1 in turbulent flows, where Ma � 1 and Re � 1. Further-
more, we can conclude that in such cases the component

ρ0∇ · (ω × vic) of the Lighthill source term ρ0
∂2vic,ivic,j

∂xi∂xj
(3.46)

is the principle source of sound.

3.4. Perturbation Equations

The acoustic/viscous splitting technique for the prediction of flow induced sound was first
introduced in [9], and afterwards many groups presented alternative and improved formula-
tions for linear and non linear wave propagation [10, 11, 12, 13]. These formulations are all
based on the idea, that the flow field quantities are split into compressible and incompressible
parts.

For our derivation, we introduce a generic splitting of physical quantities to the conserva-
tion equations. For this purpose, we choose a combination of the two splitting approaches
introduced above and define the following

p = p̄+ pic + pc = p̄+ pic + pa (3.47)

v = v̄ + vic + vc = v̄ + vic + va (3.48)

ρ = ρ0 + ρ1 + ρa . (3.49)

Thereby the field variables are split into mean and fluctuating parts just like in the LEE. In
addition the fluctuating field variables are split into acoustic and non-acoustic components.
Finally, the density correction ρ1 is build in as introduced above. This choice is motivated by
the following assumptions
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� The acoustic field is a fluctuating field.

� The acoustic field is irrotational, i.e. ∇× va = 0.

� The acoustic field requires compressible media and an incompressible pressure fluctua-
tion is not equivalent to an acoustic pressure fluctuation.

By doing so, we arrive for an incompressible flow at the following perturbation equations1

∂pa

∂t
+ v · ∇pa + ρ0c

2
0∇ · va = −∂pic

∂t
− v · ∇pic (3.50)

ρ0
∂va

∂t
+ ρ0∇

(
v · va

)
+∇pa = 0 (3.51)

with spatial constant mean density ρ0 and speed of sound c0. This system of partial differ-
ential equations is equivalent to the previously published ones [11]. The source term is the
substantial derivative of the incompressible flow pressure pic. Using the acoustic scalar po-
tential ψa and assuming a spacial constant mean density and speed of sound, we may rewrite
(3.51) by

∇
(
ρ0
∂ψa

∂t
+ ρ0 v · ∇ψa − pa

)
= 0 , (3.52)

and arrive at

pa = ρ0
∂ψa

∂t
+ ρ0 v · ∇ψa . (3.53)

Now, we substitute (3.53) into (3.50) and arrive at

1

c2
0

D2ψa

Dt2
−∆ψa = − 1

ρ0c2
0

Dpic

Dt
;

D

Dt
=

∂

∂t
+ v · ∇ . (3.54)

This convective wave equation fully describes acoustic sources generated by incompressible
flow structures and its wave propagation through flowing media. In addition, instead of the
original unknowns pa and va we have know just the scalar unknown ψa. In accordance to the
acoustic perturbation equations (APE), we name this resulting partial differential equation
for the acoustic scalar potential as Perturbed Convective Wave Equation (PCWE).

Finally, it is of great interest that by neglecting the mean flow v̄ in (3.50), we arrive at the
linearized conservation equations of acoustics with ∂pic/∂t as a source term

1

ρ0c2
0

∂pa

∂t
+∇ · va =

−1

ρ0c2
0

∂pic

∂t
(3.55)

∂va

∂t
+

1

ρ0
∇pa = 0 . (3.56)

1For a detailed derivation of perturbation equations both for compressible as well as incompressible flows, we
refer to [15]
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As in the standard acoustic case, we apply ∂/∂t to (3.55) and ∇· to (3.56) and subtract the
two resulting equations to arrive at

1

c2
0

∂2pa

∂t2
−∇ · ∇pa =

−1

c2
0

∂2pic

∂t2
. (3.57)

We call this partial differential equation the aeroacoustic wave equation (AWE). Please note,
that this equation can also be obtained by starting at Lighthill’s inhomogeneous wave equation
for incompressible flow, where we can substitute the second spatial derivative of Lighthill’s
tensor by the Laplacian of the incompressible flow pressure (see (3.13)). Using the decompo-
sition of the fluctuating pressure p′

p′ = pic + pa .

results again into (3.57).

3.5. Comparison of Different Aeroacoustic Analogies

As a demonstrative example to compare the different acoustic analogies, we choose a cylinder
in a cross flow, as displayed in Fig. 3.4. Thereby, the computational grid is just up to the

Figure 3.4.: Computational setup for flow computation.

height of the cylinder and together with the boundary conditions (bottom and top as well
as span-wise direction symmetry boundary condition), we obtain a pseudo two-dimensional
flow field. The diameter of the cylinder D is 1 m resulting with the inflow velocity of 1 m/s
and chosen viscosity in a Reynolds number of 250 and Mach number of 0.2. From the flow
simulations, we obtain a shedding frequency of 0.2 Hz (Strouhal number of 0.2). The acoustic
mesh is chosen different from the flow mesh, and resolves the wavelength of two times the
shedding frequency with 10 finite elements of second order. At the outer boundary of the
acoustic domain we add a perfectly matched layer to efficiently absorb the outgoing waves.
For the acoustic field computation we use the following formulations:

� Lighthill’s acoustic analogy with Lighthill’s tensor [L] according to (3.12) as source term
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Lighthill: ∇ · ∇ · [L] Lighthill: ∇ · ∇pic

AWE: 1/c2
0 ∂

2pic/∂t
2 PCWE: ∂pic/∂t

Figure 3.5.: Computed acoustic field with the different formulations.

� Lighthill’s acoustic analogy with the Laplacian of the incompressible flow pressure pic

as source term (see (3.13))

� the aeroacoustic wave equation (AWE) according to (3.57)

� Perturbed Convective Wave Equation (PCWE) according to (3.54); for comparison, we
set the mean flow velocity v̄ to zero.

Figure 3.5 displays the acoustic field for the different formulations. One can clearly see that
the acoustic field of PE (for comparison with the other formulations we have neglected the
convective terms) meets very well the expected dipole structure and is free from dynamic
flow disturbances. Furthermore, the acoustic field of AWE is quite similar and exhibits
almost no dynamic flow disturbances. Both computations with Lighthill’s analogy show
flow disturbances, whereby the formulation with the Laplacian of the incompressible flow
pressure as source term shows qualitative better result as the classical formulation based on
the incompressible flow velocities.
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3.6. Questions: Chapter 3

1. Explain the great idea of Lighthill towards his aeroacoustic analogy.

2. Derive Lighthill’s inhomogeneous wave equation by using the following conservation
equations

∂ρv

∂t
+∇ · π = 0

∂ρ

∂t
+
∂ρvi
∂xi

= 0

and the momentum flux tensor πij = ρvivj + (p− p0)δij − τij .

3. The acoustic pressure in the far field, generated by one vortex, can be estimated by

pa ∼ l

|x|
ρ0v

4

c2
0

Compute the acoustic power and show the scaling towards the Mach number!

4. Describe the idea of Curle and his method to include in his integral formulation the
generation of sound by flows around obstacles.

5. The acoustic pressure in the far field, generated by one vortex in the presence of an
obstacle, can be estimated by

pa ∼ 1

c0|x|
ρ0v

3 .

Compute the acoustic power and show the scaling towards the Mach number!

6. Proof the following relation

ρ0
∂2uiuj
∂xi∂xj

= ρ0∇ · (ω × vic) + ρ0∇ · ∇
(

1

2
(vic)

2

)
Which term is the dominat one towards the acoustic pressure in the far field?

7. Show that for an incompressible fluid the following relation holds

∇ · ∇pic = −ρ0
∂2vic,ivic,j

∂xi∂xj
.

Here, pic and vic denotes the incompressible flow pressure and velocity.

8. Derive the aeroacoustic wave equation (AWE) by starting at Lighthill’s inhomogeneous
wave equation (with the Laplacian of the incompressible flow pressure as source term)

1

c2
0

∂2p′

∂t2
−∇ · ∇p′ = −∇ · ∇pic

and substitute the decomposition of the fluctuating pressure

p′ = pic + pa .

Does AWE consider convection and refraction effects?
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4. One dimensional acoustics

4.1. Plane waves

For many practical applications, e.g., duct acoustics as occurring in air-conditioning systems
(trains, automotive, rooms, etc.), musical acoustics, speech production, etc., we can assume
a plane wave assumption. To be precise, we have a lower and upper frequency limit defined
by

2ν

πd2
� f <

c0

2d
. (4.1)

Thereby, ν = µ/ρ is the kinematic viscosity and d the pipe width (or diameter). The upper
limit is given by the critical (also called cut-off) frequency fg in a hard-walled pipe. Above
this frequency we will also have wave propagation in radial direction (see Fig. 4.1). The

Figure 4.1.: Acoustic pressure distribution in hard-walled pipes [16].

lower limit is given by the condition of frictionless wave propagation. Thereby, the effect of
viscosity is confined to boundary layers of thickness δA near walls, which computes by

δA =

√
µ

πρf
. (4.2)

In order to make a plane wave approximation reasonable, we should have thin viscous bound-
ary layers with δA/d� 1. Assuming a kinematic viscosity of 1.5 · 10−5 m2/s in air, the plane
wave approximation is valid over three decades of audio range within a pipe of diameter
d = O(10−2)m.1

A main topic in duct acoustics is the modelling of sources. Here, we will concern sound
generation in compact regions as a result of sudden changes in cross section or localized fluid
injection. Thereby, in our case a region with a length of the order of the pipe width d will be
defined compact. Such regions we can treat separately, e.g., by solving the full set of partial
differential equations in case of an axial fan. If the end of the pipe is part of the problem, we
will consider this end by an impedance.

1O denotes the order.
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4.2. Standing waves and resonance

We consider a closed pipe, in which an acoustic pressure distribution (in the frequency) simply
computes by the superposition of propagating and reflected waves

p̂a = p+
(
e−jkx +Rejkx

)
. (4.3)

Thereby, R denotes the reflection coefficient (see (2.45)). The particle velocity computes
according to the linear momentum conservation by

v̂a(x) =
p+

ρ0c0

(
e−jkx −Rejkx

)
(4.4)

Let’s assume, that the pipe is terminated hard-walled, which means v̂a = 0, and let’s put at
this position the origin x = 0. In this case the reflection coefficient R is one, and we obtain
for the acoustic pressure

p̂a(x) = 2p+ cos(kx)

and for the acoustic particle velocity

v̂a(x) =
−j2p+

ρ0c0
sin(kx) .

Now, the space-time distribution is obtained by taking the real part of the complex valued
quantities

pa(x, t) = Re
(
p̂ae

jωt
)

= 2p+ cos(kx) cos(ωt) (4.5)

va(x, t) = Re
(
v̂ae

jωt
)

=
2p+

ρ0c0
sin(kx) sin(ωt) . (4.6)

Such a wave is called a standing wave, since the spatial function is constant and the local
amplitude is modulated by the time dependent term (see Fig.4.2). Let’s assume that the
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Figure 4.2.: Spatial distribution of acoustic pressure and particle velocity for constant times.

standing wave is excited by a piston at x = −l moving with velocity v̂p. Then, we may write

v̂p = v̂a(x = −l) =
j2p+

a

ρ0c0
sin(kl)
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and obtain for the pressure amplitude

p+
a =

−jρ0c0v̂a

2 sin(kl)
.

Note that for kl = nπ with n ∈ {1, 2, 3..} the denominator gets zero and the amplitude of the
acoustic pressure to infinity. Using k = ω/c0 = 2π/λ, we obtain the resonance frequencies

f =
nc0

2l
; l = n

λ

2
. (4.7)

Therefore, for pipes with a length l of integer multiples of half the wavelength λ, we obtain
resonance.

4.3. Two-terminal-pair networks

According to (2.43) and (2.44), the acoustic pressure and particle velocity in a tube computes
by

p̂a(x) = p+e−jkx + p−ejkx (4.8)

v̂a(x) =
1

ρ0c0

(
p+e−jkx − p−ejkx

)
. (4.9)

At x = 0, we obtain

p̂a(0) = p̌ = p+ + p− ; v̂a(0) = v̌ =
p+ − p−

ρ0c0
.

Therefore, we may write the transfer equations with Z0 = ρ0c0 by

p̂a(x) = p̌ cos(kx)− jZ0v̌ sin(kx) (4.10)

v̂a(x) = −j p̌
Z0

sin(kx) + v̌ cos(kx) . (4.11)

For a tube with length l and pa,1, va,1 at the left side and pa,2, va,2 on the right side as

x=-l x=0

Figure 4.3.: Simple duct.

displayed in Fig. 4.3, we obtain from (4.10), (4.11) with x = −l(
p̂a,1

v̂a,1

)
=

(
cos(kl) jZ0 sin(kl)
j sin(kl)
Z0

cos(kl)

)(
p̂a,2

v̂a,2

)
. (4.12)

Now, in a lumped element model for any physical field one chooses a potential quantity
and a flux quantity and its multiplication results in the power of the system. Therefore, we
use instead the acoustic particle velocity the acoustic volume flux

qa =

∫
A

va · ds = vaA (4.13)
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with A the cross section and indeed for duct acoustics we obtain

Pa =

∫
A

pava · ds = paqa . (4.14)

Finally, (4.12) changes to(
p̂a,1

q̂a,1

)
=

(
cos(kl) j Z0

A sin(kl)

j AZ0
sin(kl) cos(kl)

)(
p̂a,2

q̂a,2

)
= K

(
p̂a,2

q̂a,2

)
. (4.15)

Now, let us apply this formalism to a jump in cross section as displayed in Fig. 4.4. To get

pa,1 

qa,1 

pa,2 

qa,2 

pa,3 

qa,3 

Figure 4.4.: Duct with a jump in cross section.

the transfer function between input and output, we just have to compute the transfer matrix
Ki for each individual duct and the overall transfer matrix Ktotal by its multiplication.(

p̂a,1

q̂a,1

)
= K1 K2

(
p̂a,3

q̂a,3

)
(4.16)

=

(
cos(kl1) j Z0

A sin(kl1)

jA1
Z0

sin(kl1) cos(kl1)

) (
cos(kl2) j Z0

A2
sin(kl2)

jA2
Z0

sin(kl2) cos(kl2)

) (
p̂a,3

q̂a,3

)
.

Figure 4.5 demonstrates the chain of the two-terminal-pair network. In general, we can

pa,1 pa,2 pa,3 

qa,1 qa,2 qa,3 

Figure 4.5.: Two-terminal-pair network for cross section jump.
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compute the transfer function between input and output for any number N of sub-systems
as follows (

p̂a,in

q̂a,in

)
=

N∏
i=1

Ki

(
p̂a,N

q̂a,N

)
(4.17)

In a next step, we consider the case of a side-branch as displayed in Fig. 4.6. The sound

pa,1 

pa,1 

qa,1 

pa,2 

qa,2 Zse 

qa,s1 pa,s1 

qa,s2 pa,s2 

s 

Figure 4.6.: Two-terminal-pair network with one side branch.

field in the main branch is effected by the side-branch and therefore, we have to compute in
a first step the transfer matrix Ks of the side-branch. To this end, we have the following
relation (

p̂a,s1

q̂a,s1

)
= Ks

(
p̂a,s2

q̂a,s2

)
=

(
K11 K12

K21 K22

)(
p̂a,s2

q̂a,s2

)
. (4.18)

Now, there are different possibilities, how the side-branch is terminated. Let us discuss two
practical relevant cases. In the first case, the side-branch may be terminated hard-walled.
Then, the acoustic volume flux qa,s2 is zero (open circuit), and the input impedance Ẑse

computes by

Ẑse =
p̂a,s1

q̂a,s1
=
K11

K21
. (4.19)

When the acoustic pressure pa,s2 is zero (short-cut), then the acoustic impedance computes
by

Ẑse =
p̂a,s1

q̂a,s1
=
K12

K22
. (4.20)

In both cases the acoustic impedance Ẑse is in parallel and the transfer matrix Ks computes
by

Ks =

(
1 0

1/Ẑse 1

)
(4.21)

For our investigation, we assume that the side-branch is hard-walled terminated (see Fig.
4.7). According to (4.12) and setting v̂a,2 zero, we obtain the following relation(

p̂a,s1

q̂a,s1

)
=

(
cos(kls) j Z0

As
sin(kls)

jAs
Z0

sin(kls) cos(kls)

)(
pa,s2

0

)
=

(
cos(kls)

jAs
Z0

sin(kls)

)
pa,s2 (4.22)
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Figure 4.7.: Two-terminal-pair network with a side branch hard-walled terminated.

from which the input impedance computes to

Ẑse =
pa,s1

qa,s1
=
Z0 cot(kls)

jAs
. (4.23)

Now, the overall transfer chain is displayed in Fig. 4.8, and we obtain the following relation
between input and output(

pa,1

qa,1

)
= K1K(Ẑe)K2

(
pa,2

qa,2

)
=

(
cos(kl1) j Z0

A1
sin(kl1)

jA1
Z0

sin(kl1) cos(kl1)

) (
1 0

1/Ẑse 1

)
(

cos(kl2) j Z0
A2

sin(kl2)

jA2
Z0

sin(kl2) cos(kl2)

)(
pa,2

qa,2

)
(4.24)

Finally, we provide the radiation impedance for an open pipe of radius R [17]

Ẑr =
Z0

πR2

(
1

4
(kR)2 + j

8kR

3π
√

2

)
. (4.25)

In this case, the acoustic pressure at the end is set to zero and the impedance Zr is in series
to the previous network.

4.4. Source terms

In a compact region of length L and fixed volume Ω enclosed by the surface Γ, we apply the
conservation laws of mass and momentum in integral form

d

dt

∫
Ω

ρ dx+

∫
Γ

ρv · nds = 0 (4.26)

d

dt

∫
Ω

ρv dx+

∫
Γ

(σf + ρv ⊗ v) · nds =

∫
Ω

f dx . (4.27)
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pa,2 se 

Figure 4.8.: Transfer chain for a two-terminal-pair network with a side branch hard-walled
terminated.

In the considered volume Ω we describe the flow in three dimensional detail. Thereby, the force
density f may model the effect of a complex flow such as the flow around a ventilator fan by
assuming a localized momentum source. Neglecting the volume contribution of d/ dt

∫
Ω

ρv dx

as well as the nonlinearity (convective term) and viscosity, we obtain in a linear approximation
in one dimension

fx = ∆p′δ(x− y) . (4.28)

Thereby, ∆p′ is the in-stationary pressure difference between input and output surface (may
be computed by CFD) and the function δ(x − y) models the compact region as a region
of zero extension. This term can be using in a one dimensional wave equation (network
representation) as a representation of a complex flow such as that around a ventilator.

4.5. Helmholtz resonator

The resonance condition for duct segments imply that the length of the tube is a multiple
integer of half the wavelength (see (4.7)). Therefore, in many practical applications this would
imply that resonators used to absorb sound should be quite large. However, a solution to this
problem is to use a non-uniform pipe in the shape of a bottle as displayed in Fig. 4.9. If the
cross-section area Ab of the bottle is large compared to An of the neck, then we can neglect
the acoustic particle velocity and assume the density as constant in the bottle. Therefore,
applying the linearized mass conservation for acoustics in integral form results in

Ω
dρa

dt
+ ρ0Anva,n = 0 . (4.29)

Here, va,n denotes the acoustic particle velocity in the neck, which can be assumed to be
constant within this region. Furthermore, using the linearized momentum conservation for
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Figure 4.9.: Design of a Helmholtz resonator.

acoustics (integral form) in the neck provides

ρ0l
dva,n

dt
+ pa = 0 . (4.30)

However, just using l as the geometric length of the neck is not correct. We have to take
into account the inertia of the acoustic particle velocity at both ends of the neck, so that a
correction has to be performed. A standard correction is to add the term Rnπ/2 with Rn the
radius of the neck, which changes (4.30) to

ρ0

(
l +

Rnπ

2

)
dva,n

dt
+ pa = 0 . (4.31)

Combining (4.29) and (4.31) with the standard pressure-density relation over the speed of
sound c0 results in a pure differential equation for the acoustic pressure

ω
(l +Rnπ/2)

c2
0An

d2pa

dt2
− pa = 0 . (4.32)

Thus, we obtain the resonance frequency by

fres =
1

2π

√
c2

0An

(l +Rnπ/2) Ω
. (4.33)

4.6. Flow-induced oscillations by a Helmholtz resonator

In the previous sections, we have just considered the acoustic field in a quiescent fluid. How-
ever, very often the flow can not be neglected and furthermore, it is the cause for exciting
acoustic fields. A quite famous example is flow induced pulsations of a Helmholtz resonator
or wall cavity, e.g., sun-roof of a car.

The configuration which we consider is displayed in Fig. 4.10. Self-sustained oscillations
with a frequency close to the resonance frequency of the resonator occur when the phase
condition for a perturbation in the feedback loop (shear layer / resonator) is satisfied and
the gain is large enough. In a first order approximation, perturbations of the shear layer at
the opening of the resonator propagate with a velocity vc close to 0.4v0. Thereby, it appears
from experiments that when the travelling time of a perturbation across the opening with
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v0 

W 

Figure 4.10.: Helmholtz resonator in a wall with grazing flow [18].

length w roughly matches the oscillation period 2π/ωres of the resonator (or integer multiples
n) pulsation occurs

Ttravel =
w

0.4v0
=

2π

ωres
n → 2πn =

wωres

0.4v0
. (4.34)

The vorticity of the shear layer is concentrated into discrete vortices. At a moderate amplitude
of the acoustic particle velocity va/v0 = O(0.1) one can assume that the acoustic field only
triggers the flow instability but does not dramatically modify the amount of vorticity shed at
the upstream edge of the slot. Using Howe’s analogy, one can compute the acoustic power Pa

generated by vortices due to instability of the grazing flow along the orifice of area A = w b
by [5]

Pa = −ρ0

∫
Ω

(ω × v) · va dx ∼ O(5 · 10−2)
1

2
ρ0v

2
0wbva . (4.35)

Upon formation of a new vortex, the acoustic particle velocity va is directed towards the

va 

Pa 

Figure 4.11.: Absorption and production of acoustic energy by vortex shedding [18].

interior of the resonator (see Fig. 4.11). Therefore, initially the vortex is absorbing energy
from the acoustic field. In the second half of the acoustic period the acoustic particle velocity
va is directed outwards from the resonator, and acoustic energy is produced.

4.7. Questions: Chapter 4

1. For duct acoustic to be considered one dimensional, we have a lower and upper frequency
limit. Describe the physical effects of these limits.
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2. Assuming one dimensional acoustics in a duct, derive the formula for the acoustic pres-
sure and the acoustic particle velocity.

3. A pipe segment with a different cross sectional area A2 than the cross section A1 of the
rest of the pipe can be used as a filter to prevent the propagation of waves generated
by a piston. Two solutions can be considered: A2 > A1 and A1 < A2 (see Fig. 4.12).
Assuming an ideal open end at x = L1+L2+L3, provide a set of equations from which
we can compute the acoustic particle velocity va at the end of the pipe for a given piston
velocity vp.

c
c 

c
c 

c
c 

c
c 

c
c 

c
c 

c
c 

c
c 

vp 

vp 

A1 A2 A1 

A1 
A2 A2 A1 

pa 

pa 

Figure 4.12.: Pipe segment

4. Proof that for an acoustic impedance Ẑse being parallel, the transfer matrixKs computes
by (4.21).
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A. Vector identities and operations in
different coordinate systems

The nabla operator is defined by

∇ =
∂

∂x
ex +

∂

∂y
ey +

∂

∂z
ez (A.1)

with the unit vectors ex, ey and ez. Thereby, the gradient of a scalar function φ results in a
vector field and computes by

∇φ =


∂φ
∂x

∂φ
∂y

∂φ
∂z

 . (A.2)

The divergence of a vector field results in a scalar value

∇ · u =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

. (A.3)

Finally, the curl of a vector u computes as

∇× u =


ex ey ez
∂
∂x

∂
∂y

∂
∂z

ux uy uz

 =


∂uz
∂y −

∂uy
∂z

∂ux
∂z −

∂uz
∂x

∂uy
∂x −

∂ux
∂y

 . (A.4)

In addition, the gradient of a vector u computes by

∇u =
∂ui
∂xj

=


∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy
∂x

∂uy
∂y

∂uy
∂z

∂uz
∂x

∂uz
∂y

∂uz
∂z

 . (A.5)

By using the definitions of gradient, divergence, and curl, the following relations hold

∇(ξη) = ξ∇η + η∇ξ (A.6)

∇ · (ξu) = ξ∇ · u+ u · ∇ξ (A.7)

∇ · (u1 × u2) = u2 · ∇ × u1 − u1 · ∇ × u2 (A.8)

∇× (ξu) = ξ∇× u− u×∇ξ (A.9)

∇ · ∇u = ∇(∇ · u)−∇× (∇× u) (A.10)

∇× (u× v) = (v · ∇)u− v (∇ · u)− (u · ∇)v + u (∇ · v) (A.11)

ξ u · ∇u = ∇ · (ξuu)− u∇ · ξu (A.12)

u · ∇u = ∇× u × u+∇1

2
u2 . (A.13)
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These relations combine the essential differential operators and build up a basis for the de-
scription of physical fields.

Furthermore, we introduce the Laplace operator on a scalar

∇ · ∇φ = 4φ = (∇ · ∇)φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
, (A.14)

and for a vector u

(∇ · ∇)u = 4u =


∂2ux
∂x2

+ ∂2ux
∂y2

+ ∂2ux
∂z2

∂2uy
∂x2

+
∂2uy
∂y2

+
∂2uy
∂z2

∂2uz
∂x2

+ ∂2uz
∂y2

+ ∂2uz
∂z2

 . (A.15)

The following operations always result in zero

∇× (∇φ) = 0 ; ∇ · (∇×∇u) = 0 . (A.16)

In a next step, we will define the above introduced vector operations in the cylindrical
coordinate system. In doing so, we have (see Fig. A.1a)

x = r cosϕ ; y = r sinϕ ; z = z , (A.17)

and therefore

u = urer + uϕeϕ + uzez (A.18)

er = cosϕ ex + sinϕ ey + ez (A.19)

eϕ = − sinϕ ex + cosϕ ey (A.20)

ez = ez (A.21)

∇ = er
∂

∂r
+
eϕ
r

∂

∂ϕ
+ ez

∂

∂z
. (A.22)

Therefore, we obtain for the gradient, divergence and curl operations in cylindrical coordi-

3/2 π

P(r,φ,z)

1/2 π

π

0

φ
r

z

x y

z

(a) Cylindrical coordinate system. (b) Volume element.

Figure A.1.: Cylindrical coordinate systems.

57



nates the following formula

∇φ =


∂φ
∂r

1
r
∂φ
∂ϕ

∂φ
∂z

 (A.23)

∇ · u =
1

r

∂(rur)

∂r
+

1

r

∂uϕ
∂ϕ

+
∂uz
∂z

(A.24)

∇× u =
1

r


er reϕ ez
∂
∂r

∂
∂ϕ

∂
∂z

ur ruϕ uz

 =


1
r

(
∂uz
∂ϕ −

∂(ruϕ)
∂r

)
r ∂ur∂z − r

∂uz
∂r

1
r

(
∂(ruϕ)
∂r − ∂ur

∂ϕ

)
 . (A.25)

Furthermore, the Laplacian of a scalar function φ computes by

∇ · ∇φ =
1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂ϕ2
+
∂2φ

∂z2
. (A.26)

Performing an integration in cylindrical coordinates, needs a transformation for the volume
element (see Fig. A.1b)

dΩ = r dr dϕdz . (A.27)

Therefore, we obtain∫
Ω

f(x, y, z) dx dy dz =

∫
z

∫
r

∫
ϕ

f(r, ϕ, z) r dϕdr dz . (A.28)

Furthermore, we also provide all these relations for spherical coordinates. Thereby, we have

3/2 π P(r,φ,θ)

0r

θ

r

1/2 π

π

0

φ

x y

z

(a) Spherical coordinate system. (b) Volume element.

Figure A.2.: Spherical coordinate systems

the relations (see Fig. A.2a)

x = r cosϕ sinϑ ; y = r sinϕ sinϑ ; z = r cosϑ , (A.29)
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and therefore

u = urer + uϕeϕ + uϑeϑ (A.30)

er = sinϑ (cosϕ ex + sinϕ ey) + cosϑez (A.31)

eϕ = − sinϕ ex + cosϕ ey (A.32)

eϑ = cosϑ (cosϕ ex + sinϕ ey)− sinϑez (A.33)

ez = ez (A.34)

∇ = er
∂

∂r
+
eϑ
r

∂

∂ϑ
+

eϕ
r sinϑ

∂

∂ϕ
. (A.35)

Therefore, we obtain for the gradient, divergence and curl operations in spherical coordinates
the following formula

∇φ =


∂φ
∂r

1
r
∂φ
∂ϑ

1
r sinϑ

∂φ
∂ϕ

 (A.36)

∇ · u =
1

r2

∂(r2ur)

∂r
+

1

r sinϑ

∂ sinϑuϑ
∂ϑ

+
1

r sinϑ

∂uϕ
∂ϕ

(A.37)

∇× u =
1

r2 sinϑ


er reϑ r sinϑ eϕ
∂
∂r

∂
∂ϑ

∂
∂ϕ

ur ruϑ r sinϑuϕ

 =


1

r2 sinϑ

(
∂(r sinϑuϕ)

∂ϑ − ∂(ruϑ)
∂ϕ

)
r
(
∂ur
∂ϕ −

∂(r sinϑuϕ)
∂r

)
r sinϑ

(
∂(ruϑ)
∂r − ∂ur

∂ϑ

)
 .(A.38)

Furthermore, the Laplacian of a scalar function φ computes by

∇ · ∇φ = 4φ =
1

r2

∂

∂r

(
r2∂φ

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂φ

∂ϑ

)
+

1

r2 sin2 ϑ

∂2φ

∂ϕ2
. (A.39)

Performing an integration in the spherical coordinate system, the volume element transforms
(see Fig. A.2b)

dΩ = (r dϑ) ( dr) (r sinϑ dϕ) = r2 sinϑ dr dϕdϑ , (A.40)

and therefore the integral∫
Ω

f(x, y, z) dx dy dz =

∫
r

∫
ϕ

∫
ϑ

f(r, ϕ, ϑ) r2 sinϑ dϑ dϕdr . (A.41)

Important is also the Helmholtz decomposition, which states that each vector field v (e.g.,
the flow velocity) can be decomposed in an irrotational field described by the gradient of a
scalar potential φ and in a solenoidal field u described by a vector potential A

v = ∇×A+∇φ . (A.42)

Furthermore, the integral theorem of Gauss (also known as the divergence theorem) trans-
forms a volume integral to a surface integral∫

Ω

∇ · u dx =

∮
Γ(Ω)

u · ds =

∮
Γ(Ω)

u · n ds . (A.43)
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The theorem of Stokes transforms a surface integral to a line integral∫
Γ

∇× u · ds =

∮
C(Γ)

u · dl . (A.44)

Finally, we want to define the integration by parts and its extension to Green’s integral
formula. Let Ω ⊂ Rn, n = 2, 3 be a domain with smooth boundary Γ. Then, for any
u, v ∈ H1(Ω) the following relation holds (definition of functional spaces, e.g., H1 see [19])∫

Ω

∂u

∂xi
v dΩ =

∫
Γ
uvn · ei ds−

∫
Ω

u
∂v

∂xi
dΩ . (A.45)

In (A.45) n denotes the outer normal of the considered domain Ω with boundary Γ. By a
multiple application of (A.45), we arrive at Green’s formula∫

Ω

4u v dΩ =

∫
Γ

∂u

∂n
v ds−

∫
Ω

∇u · ∇v dΩ (A.46)

for all u ∈ H2(Ω) and v ∈ H1(Ω).
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B. Tensors and Index Notation

Tensors are simply speaking a linear mapping. E.g., a second order tensor [A] is a linear
mapping that associates a given vector u with a second vector v by

v = [S]u .

The term linear in the above relation implies that given two arbitrary vectors u and v and
two arbitrary scalars α, β, then the following relation holds

[S] (αu+ βv) = α[S]u+ β[S]v .

The extension to tensors of higher rank is straight forward. E.g., Hook’s law maps the
mechanical strain tensor [S] by the 4th order elasticity tensor [c] to the mechanical stress
tensor [σ]

[σ] = [c] [S] .

Now, index notation is a powerful tool to write complex operations of vectors and tensors in
a more readable way. However, there are times when the more conventional vector notation
is more useful. It is therefore important to be able to easily convert back and forth between
the two notations. Table B.1 describes our notation1. An index can be a free or a dummy

Table B.1.: Vector and index notation.

Vector Index Rank

Scalar ξ ξ 0

Vector u ui 1

Tensor (2nd order) [A] Aij 2

Tensor (3nd order) [B] Bijk 3

Tensor (4nd order) [C] Cijkl 4

index. For free indices, the following rules are defined:

� The number of free indices equals the rank as displayed in Tab. B.1. Thereby, a scalar
is a tensor with rank 0, and a vector is a tensor of rank 1. Tensors may assume a rank
of any integer greater than or equal to zero. Please note that it is just allowed to sum
together tensors with equal rank.

1Our notation does not differ between tensors of different orders.
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� A free index appears once and only once within each additive term and remains within
the expression after the operation has been performed, e.g.

ai = εijkbjck +Aijdj . (B.1)

� The same letter must be used for the free index in every additive term.

� The first free index in a term corresponds to the row, and the second corresponds to
the column. Thus, a vector (which has only one free index) is written as a column of
three rows

u = ui =


u1

u2

u3


and a second order tensor as

[A] = Aij =


A11 A12 A13

A21 A22 A23

A31 A32 A33


A dummy index defines an index, which does not appear in the final expression any more.

The rules are as follows:

� A dummy index appears twice within an additive term of an expression. For the exam-
ple above (see (B.1)), the dummy indices are j and k.

� A dummy index implies a summation over the range of the index, e.g.

aii = a11 + a22 + a33 .

For many operations we use the Kronecker delta (2nd order tensor)

δij =


1 0 0

0 1 0

0 0 1

 (B.2)

and the alternating unit tensor (3rd order tensor)

εijk =


1 if ijk = 123, 231 or 312

0 if any two indices are the same

−1 if ijk = 132, 213 or 321

(B.3)

Thereby, the following relation can be explored

εijk =
1

2
(i− j) (j − k) (k − i) .

With these definitions, we may write vector and tensor operations using index notation. Here,
we list the most useful ones:
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� Scalar product of two vectors

a · b = c → aibi = c (B.4)

� Vector product of two vectors

a× b = c → εijkajbk = ci (B.5)

� Gradient of a scalar

∇φ = u → ∂φ

∂xi
= ui (B.6)

� Gradient of a vector

∇a =


∂a1
∂x1

∂a2
∂x1

∂a3
∂x1

∂a1
∂x2

∂a2
∂x2

∂a3
∂x2

∂a1
∂x3

∂a2
∂x3

∂a3
∂x3

 → ∂ai
∂xj

(B.7)

� Gradient of a second order tensor

∇ [A] =
∂[A]

∂x
=

3∑
i,j,k=1

∂Aij
∂xk

ei ⊗ ej ⊗ ek (B.8)

� Divergence of a vector

∇ · a = b → ∂ai
∂xi

= b (B.9)

� Divergence of a second order tensor

∇ · [A] =

3∑
i,j=1

∂Aij
∂xj

ei (B.10)

� Curl of a vector

∇× a = b → εijk
∂ak
∂xj

= bi (B.11)

� Double product or double contraction of two second order tensors

[A] : [B] = c → AijBij = c (B.12)

or of a fourth order tensor with a second order tensors, e.g. Hooks law

[σ] = [c] : [S] (B.13)

� Dyadic or tensor product
a⊗ b = [C] → aibj = Cij (B.14)

[A]⊗ b = [C] → Aijbk = Cijk (B.15)

[A]⊗ [B] = [D] → AijBkl = Dijkl (B.16)

63



� Product of two tensors
[A][B] = [C] → AijBjk = Cik (B.17)

Note that only the inner index is to be summed.

� Trace of a tensor
tr ([A]) = b → Aii = b (B.18)
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C. Generalized Functions

In reality, dissipative effects cause discontinuities to be smooth and real signals to decay for
t → ∞. However, in idealized models, we often cannot describe the properties by ordinary
functions. Two simple examples: (1) a point source is zero everywhere except in one point,
where it is infinitely large; (2) the function sinωt is not a decaying function, which in the
classical sense cannot be Fourier-transformed.

So, in general we can state that our mathematical apparatus for functions is too restricted
and so it makes sense to extend it to so called generalized functions.

C.1. Basics

Definition (Lebesgue). A function f(x) is locally integrable in Rn if∫
Ω

|f(x)| dx

exists for every bounded volume Ω in Rn. A function f(x) is locally integrable on a hyper-
surface in Rn if ∫

Γ

|f(x)| ds

exists for every bounded region Γ in Rn.

Definition. The support denoted by supp of a function f(x) is the closure of the set of all
points x such that f(x) 6= 0. If supp f is a bounded set, then f is said to have compact
support (see Fig. C.1a).

-l

1+x 1-x

x

f(x)

l0

l

(a) Function with compact support.

0-l l
x

f(x)

(b) Infinitely differentiable functions
with compact support.

Figure C.1.: Special properties of functions.

We know that the delta function δ(x) becomes meaningful, if it is first multiplied by a
sufficient smooth auxiliary function and then integrated over the entire space, e.g. in the
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one-dimensional space
∞∫
−∞

δ(x)φ(x) dx = φ(0) .

Therefore, we will follow the Schwartz-Sobolev approach, which includes the following
steps: (1) operators on ordinary functions such as differentiation and Fourier transform are
extended by first writing these operators as functionals for ordinary functions; (2) extend
it for all generalized functions, e.g., also for the delta function, etc. In doing so, we first
define the space D of all test functions φ(x), which are infinitely differentiable functions with
bounded support. The prototype of such a test function belonging to D is

φ(x) =

{
e
− a2

a2−r2 r < a
0 r > a

as displayed in Fig. C.1b (for details see [20]). A linear functional of f on the space D is
an operation by which we assign to every test function φ(x) a real (complex) number - a
functional - denoted by

< f, φ > =

∞∫
−∞

f φ dx

such that
< f, c1φ1 + c2φ2 > = c1 < f, φ1 > +c2 < f, φ2 >

for arbitrary test functions φ1, φ2 and real numbers c1. c2.

Definition. A linear functional on D is continuous, iff the sequence of numbers < f, φm >
converges to < f, φ >, when the sequence of test functions {φm} converges to the test function
φ. Thus

lim
m→∞

< f, φm >=< f, lim
m→∞

φm > .

Definition. A continuous linear functional on the space D of test functions is called a distri-
bution.

So, every locally integrable function f(x) generates a distribution through the formula

< f, φ >=

∫
Rn

f(x)φ(x) dx ,

and is denoted a regular distribution. All other distributions are called singular, e.g. a
distribution with the singular function δ. The space of all distributions on D is denoted
by D′, which is larger as D and which is also a linear space (see Fig. C.2). It forms a
generalization of the class of locally integrable functions because it contains functions such as
δ(x) that are not locally integrable. For this reason distributions are also called generalized
functions. We shall use the term distribution and generalized functions interchangeably.

Example: The Heaviside distribution in Rn is

< HΩ, φ >=

∫
Ω

φ(x) dx where HΩ(x) =

{
1, x ∈ Ω
0 x /∈ Ω
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Ordinary
functions

f(x)

(x)
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Singular generalized
functions

Real or
complex numbers

Figure C.2.: Generalized functions are continuous linear functionals on space D of test func-
tions.

0
x

H(x)

(a) Heaviside functions.

0
x x

III(x)
f(x)

(b) Sampling function with compact support.

Figure C.3.: Special functions.

For R1 it becomes (see function in Fig. C.3a)

< H,φ >=

∞∫
0

φ(x) dx .

Since H(x) is a piecewise continuous function, this is a regular distribution.

Example: An infinite sequence of delta functions is described by

III(x) =
∞∑

n=−∞
δ(x− n) .

This is called the sampling or replicating function (see Fig. C.3b) because it gives information
about the function f(x) at x = n

< III(x), f(x) >=

∞∑
n=−∞

f(x)δ(x− n) .

Since the delta function is not locally integrable, this distribution is a singular distribution.
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C.2. Special properties

In the following, we will derive important properties of generalized functions.

C.2.1. Shift operator

Let f(x) be an ordinary function, which we shift by a value of h. Then, the linear functional
on the space of test functions computes as

< f(x+ h), φ(x) >=

∞∫
−∞

f(x+ h)φ(x) dx =

∞∫
−∞

f(x)φ(x− h) dx .

This rule can now be used for all generalized functions in D′, e.g. for the delta function δ(x)

< δ(x+ h), φ(x) >=

∞∫
−∞

δ(x+ h)φ(x) dx =

∞∫
−∞

δ(x)φ(x− h) dx = φ(−h) .

C.2.2. Linear change of variables

Let < f, φ > be a regular distribution generated by the function f(x) that is locally integrable
in Rn. Now, let x = Ay − a, where A is a n × n matrix with det(A) 6= 0 and a a constant
vector, be a non-singular linear transformation of the space Rn onto itself. Then we have

< f(Ay − a), φ(y) > =

∫
Rn

f(Ay − a)φ(y) dy

=
1

|det(A)|

∫
Rn

f(x)φ
(
A−1(x+ a)

)
dx

=
1

|det(A)|
< f(x), φ

(
A−1(x+ a)

)
> , (C.1)

where A−1 is the inverse of the matrix A. In special, we have for the delta function

< δ(ax), φ(x) >=
1

|a|
< δ(x), φ(x) > . (C.2)

So we can simply write δ(ax) = (1/|a|)δ(x).

C.2.3. Derivatives of generalized functions

Let f(x) be an ordinary function out of D, e.g. f ∈ C1. Then we can write

< f ′(x), φ(x) >=

∞∫
−∞

f ′(x)φ(x) dx .

Performing an integration by parts results in

< f ′(x), φ(x) >= f(x)φ(x)|∞−∞︸ ︷︷ ︸
= 0 due to local support of φ(x)

−
∞∫
−∞

f(x)φ′(x) dx . (C.3)
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This result can be extended to define the derivatives of all generalized functions in D′

< fn(x), φ(x) >= (−1)n < f(x), φn(x) > , (C.4)

which states that generalized functions have derivatives of all orders.

Example: The derivative of the delta function δ′(x) has the property

< δ′(x), φ(x) >= −
∞∫
−∞

δ(x)φ′(x) dx = −φ′(0) . (C.5)

Example: The derivative of the Heaviside function computes as

< H ′(x), φ(x) > =

∞∫
−∞

H ′(x)φ(x) dx

= − < H(x), φ′(x) >

=

∞∫
0

φ′(x) dx = − φ(x)|∞0

= φ(0) =< δ(x), φ(x) > . (C.6)

C.2.4. Multidimensional delta function

In multidimensional, δ(x) has a simple interpretation by

< δ(x), φ(x) >=

∞∫
−∞

δ(x)φ(x) dx = φ(0) .

Thus,
δ(x) = δ(x1) δ(x2) δ(x3)...δ(xn) ,

where x = (x1, x2, .., xn). Of great interest are applications of δ(f) and δ′(f), where f = 0 is
a surface in the three-dimensional space as displayed in Fig. C.4. Then, for a test function
φ(x) defined in Ω and on Γ we have the following properties

∞∫
−∞

φ(x)∇H(f) dx =

∮
Γ

φ(x)nds =

∮
Γ

φ(x) ds (C.7)

∞∫
−∞

φ(x)
∂H(f)

∂xj
dx =

∮
Γ

φ(x)nj ds =

∮
Γ

φ(x) dsj . (C.8)

In the following, we want to proof these properties. First of all, we may write by the chain
rule of differentiation

∂H(f)

∂xj
=
∂H(f)

∂f︸ ︷︷ ︸
= δ(f)

∂f

∂xj
⇒ ∇H(f) = δ(f)∇f .
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Figure C.4.: Surface defined by f = 0.

Thereby, the gradient of f points in the direction of n. In a next step, we will decompose the
volume element into a surface element ds and a line element dl⊥ in the direction of n, and
write

dx = dl⊥ ds .

Since, f is zero on the surface Γ, a Taylor expansion up to first order results in

f =

(
∂f

∂l⊥

)
Γ

l⊥ = |∇f | l⊥ .

Using this relation and the property (C.2), we may write

δ(f) = δ(|∇f |l⊥) =
δ(l⊥)

|∇f |
.

Hence, we obtain

∞∫
−∞

φ(x)∇H(f) dx =

∞∫
−∞

φ(x)∇f δ(f) dx

=

∞∫
−∞

φ(x)
∇f
|∇f |︸ ︷︷ ︸
n

δ(l⊥) dl⊥ ds

=

∮
Γ

φ(x)nds , (C.9)

since n = ∇f/|∇f |.
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[11] R. Ewert and W. Schröder. Acoustic perturbation equations based on flow decomposition
via source filtering. Journal of Computational Physics, 188:365–398, 2003.

[12] J.H. Seo and Y.J. Moon. Perturbed compressible equations for aeroacoustic noise pre-
diction at low mach numbers. AIAA Journal, 43:1716–1724, 2005.

[13] C.D. Munz, M. Dumbser, and S. Roller. Linearized acoustic perturbation equations for
low Mach number flow with variable density and temperature. Journal of Computational
Physics, 224:352 – 364, 2007.

[14] J. Seo and Y. Moon. Linearized perturbed compressible equations for low Mach number
aeroacoustics. Journal of Computational Physics, 218(2):702–719, 2006.
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