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1 A short summary of the basics

1.1 Physical quantities, units and working with units

The value of a physical quantity Q is expressed as the product of a
numerical value Q and a unit of measurement [Q]:

Q = Q× [Q] (1)

For example, if the temperature T of a body is quantified (measured) as 25
degrees Celsius this is written as:

T = 25×o C = 25oC, (2)

where T is the symbol of the physical quantity ”temperature”, 25 is the
numerical factor and oC is the unit.

By convention, physical quantities are organized in a dimensional system
built upon base quantities, each of which is regarded as having its own di-
mension. The seven base quantities of the International System of Quantities
(ISQ) and their corresponding SI units are listed in Table 1. Other conven-
tions may have a different number of fundamental units (e.g. the CGS and
MKS systems of units).

Name Symbol for
quantity

Symbol for
dimension

SI base
unit

Symbol for
unit

Length l, x, r, etc. L meter m

Time t T second s

Mass m M kilogram kg

Electric current I, i I ampere A

Thermodynamic
temperature

T θ kelvin K

Amount of sub-
stance

n N mole mol

Luminous inten-
sity

Iv J candela cd

Table 1: International System of Units base quantities

All other quantities are derived quantities since their dimensions are
derived from those of base quantities by multiplication and division. For
example, the physical quantity velocity is derived from base quantities length
and time and has dimension L/T. Some derived physical quantities have
dimension 1 and are said to be dimensionless quantities.

The International System of Units (SI) specifies a set of unit prefixes
known as SI prefixes or metric prefixes. An SI prefix is a name that precedes
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a basic unit of measure to indicate a decimal multiple or fraction of the unit.
Each prefix has a unique symbol that is prepended to the unit symbol, see
Table 2.

Prefix Symbol 10n

giga G 109

mega M 106

kilo k 103

hecto h 102

deca da 101

deci d 10−1

centi c 10−2

milli m 10−3

micro µ 10−6

nano n 10−9

Table 2: International System of Units prefixes.

A quantity is called:

extensive when its magnitude is additive for subsystems (volume, mass,
etc.)

intensive when the magnitude is independent of the extent of the system
(temperature, pressure, etc.)

Units can be used as numbers in the sense that you can add, subtract,
multiply and divide them - with care. Much confusion can be avoided if you
work with units as though they were symbols in algebra. For example:

• Multiply units along with numbers:

(5 m) × (2 sec) = (5 × 2) × (m × sec) = 10 m sec.

The units in this example are meters times seconds, pronounced as
‘meter seconds’ and written as ‘m sec’.

• Divide units along with numbers:

(10 m) / (5 sec) = (10 / 5) × (m / sec) = 2 m/sec.

The units in this example are meters divided by seconds, pronounced
as ‘meters per second’ and written as ‘m/sec’. This is a unit of speed.

• Cancel when you have the same units on top and bottom:

(15 m) / (5 m) = (15 / 5) × (m / m) = 3.
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In this example the units (meters) have cancelled out, and the result
has no units of any kind! This is what we call a ‘pure’ number. It would
be the same regardless what system of units were used.

• When adding or subtracting, convert both numbers to the same units
before doing the arithmetic:

(5 m) + (2 cm) = (5 m) + (0.02 m) = (5 + 0.02) m = 5.02 m.

Recall that a ‘cm’, or centimeter, is one hundredth of a meter. So 2
cm = (2 / 100) m = 0.02 m.

• You can’t add or subtract two numbers unless you can convert them
both to the same units:

(5 m) + (2 sec) = ???

1.2 Understanding the words ”steady-state” and ”unsteady”

TODO

1.3 Linear motion

Linear motion is motion along a straight line, and can therefore be de-
scribed mathematically using only one spatial dimension. It can be uniform,
that is, with constant velocity (zero acceleration), or non-uniform, that is,
with a variable velocity (non-zero acceleration). The motion of a particle (a
point-like object) along the line can be described by its position x, which
varies with t (time).

An example of linear motion is that of a ball thrown straight up and
falling back straight down.

The average velocity v during a finite time span of a particle undergoing
linear motion is equal to v =

∑
x/
∑
t, where

∑
x is the total displacement

and
∑
t denotes the time needed.

The instantaneous velocity of a particle in linear motion may be found by
differentiating the position x with respect to the time variable t: v = dx/dt.
The acceleration may be found by differentiating the velocity: a = dv/dt.
By the fundamental theorem of calculus the converse is also true: to find
the velocity when given the acceleration, simply integrate the acceleration
with respect to time; to find displacement, simply integrate the velocity with
respect to time.

This can be demonstrated graphically. The gradient of a line on the
displacement time graph represents the velocity. The gradient of the velocity
time graph gives the acceleration while the area under the velocity time
graph gives the displacement. The area under an acceleration time graph
gives the velocity.
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1.4 Circular motion

Circular motion is rotation along a circle: a circular path or a circular
orbit. It can be uniform, that is, with constant angular rate of rotation, or
non-uniform, that is, with a changing rate of rotation.

Examples of circular motion are: an artificial satellite orbiting the Earth
in geosynchronous orbit, a stone which is tied to a rope and is being swung in
circles (cf. hammer throw), a racecar turning through a curve in a race track,
an electron moving perpendicular to a uniform magnetic field, a gear turn-
ing inside a mechanism. Circular motion is accelerated even if the angular
rate of rotation is constant, because the object’s velocity vector is constantly
changing direction. Such change in direction of velocity involves acceleration
of the moving object by a centripetal force, which pulls the moving object
towards the center of the circular orbit. Without this acceleration, the object
would move in a straight line, according to Newton’s laws of motion.

For motion in a circle of radius R, the circumference of the circle is
C = 2πR. If the period for one rotation is T , the angular rate of rotation,
also known as angular velocity, ω [rad/s] is:

ω =
2π

T
. (3)

In mechanical engineering, the revolution number is often used:

n =
ω

2π
× 60

[
rpm =

number of rotations

minute

]
(4)

The speed of the object travelling the circle is

v =
2πR

T
= Rω. (5)

The angle θ swept out in a time t is

θ = 2π
t

T
= ωt. (6)

The acceleration due to change in the direction of the velocity is found
by analysing the change of the velocity vector in (small) time interval ∆t.
As ω = const., we have |v1| = |v2| := v. From the triangle we see that

∆v
2

v
= sin

∆ϕ

2
≈ ∆ϕ

2
for ϕ < 5o → ∆v

v
= ∆ϕ = ω∆t. (7)

Thus, we have

a =
∆v

∆t
= ωv = Rω2 =

v2

R
(8)

and is directed radially inward.

The angular acceleration ε [rad/s2] is

ε =
∆ω

∆t
. (9)
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1.5 Newton’s first law

Every body persists in its state of being at rest or of moving uniformly
straight forward, except insofar as it is compelled to change its state by force
impressed.

This law states that if the resultant force (the vector sum of all forces
acting on an object) is zero, then the velocity of the object is constant.
Consequently:

• An object that is at rest will stay at rest unless an unbalanced force
acts upon it.

• An object that is in motion will not change its velocity unless an
unbalanced force acts upon it.

Newton placed the first law of motion to establish frames of reference for
which the other laws are applicable. The first law of motion postulates the
existence of at least one frame of reference called a Newtonian or inertial
reference frame, relative to which the motion of a particle not subject to
forces is a straight line at a constant speed.

1.6 Newton’s second law

The second law states that the net force on a particle is equal to the
time rate of change of its linear momentum p in an inertial reference frame:

F =
dp

dt
=

d

dt
(mv) = m

dv

dt
= ma, (10)

where we assumed constant mass. Thus, the net force applied to a body
produces a proportional acceleration.

For circular motion, we have

M = θε, (11)

with M [Nm] being the torque M = Fr, ε denotes angular acceleration and
θ [kgm2] is the moment of inertia.

1.7 The moment of inertia

The moment of inertia of an object about a given axis describes how
difficult it is to change its angular motion about that axis. The standard
notation is θ with the actual axis in the subscript, e.g. θx meaning moment
of inertia with respect to axis x.
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Consider a point of mass m rotating around an axis with circumferential
velocity v. The angular velocity is ω and the radius of the circle is r. The
kinetic energy is

E =
1

2
mv2 =

1

2
m (rω)2 =

1

2
ω2 mr2︸︷︷︸

θ

. (12)

Some equations for the moment of inertia:

• a mass point rotating on a circle of radius r: θ = mr2

• a thin ring of radius r rotating around its own axis: θ = mr2

• a thin disc of radius r rotating around its own axis: θ = 1
2mr

2

• a thin rod of mass m and length l, rotating around the axis which
passes through its center and is perpendicular to the rod: θ = 1

12ml
2

• a thin rod of mass m and length l, rotating around the axis which
passes through its end and is perpendicular to the rod: θ = 1

3ml
2

• a solid ball of mass m and radius r, rotating around an axis which
passes through the center: θ = 2

5mr
2

Let us calculate the moment of inertia of a disc of height b, radius R and
uniform density ρ at its own axis. We divide the radius into N + 1 rings:
ri = iR/N = i∆r. The moment of inertia of the ith ring is

θi = mir
2
i = 2riπ︸︷︷︸

circumference

∆r

︸ ︷︷ ︸
area

bρ r2
i = 2i

R

N
π
R

N
bρ

(
i
R

N

)2

(13)

By summing up these rings we obtain

θdisc = lim
N→∞

N∑
i=1

θi = lim
N→∞

2

(
R

N

)4

πbρ

N∑
i=1

i3

= lim
N→∞

2

(
R

N

)4

πbρ
1

4
N2(1 +N2) = 2R4πbρ

1

4
=

1

2
mR2 (14)

The parallel axis theorem (or Huygens-Steiner theorem) can be used to
determine the moment of inertia of a rigid body about any axis, given the
moment of inertia of the object about the parallel axis through the object’s
centre of mass and the perpendicular distance (r) between the axes. The
moment of inertia about the new axis z is given by:

θz = θcm +mr2 (15)
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where θcm is the moment of inertia of the object about an axis passing
through its centre of mass, m is the object’s mass and r is the perpendicular
distance between the two axes. For example, let us compute the moment of
inertia of a thin rod rotating around the axis which passes through its end:

θend = θcm +m

(
l

2

)2

=
1

12
ml2 +

1

4
ml2 =

1

3
ml2. (16)

Finally, the moment of inertia of an object can be computed simply as
the sum of moments of inertia of its ”building” objects.

1.8 Work

In physics, mechanical work is the amount of energy transferred by a
force acting through a distance. In the simplest case, if the force and the
displacement are parallel and constant, we have

W = Fs. (17)

It is a scalar quantity, with SI units of joules. If the direction of the force
and the displacement do not coincide (e.g. when pulling a bob up to a hill)
- but they are still constant - one has to take the parallel components:

W = F · v = |F| |v| cos θ = Fvcosθ, (18)

where θ is the angle between the force and the displacement vector and ·
stands for the dot product of vectors.

In situations where the force changes over time, or the path deviates
from a straight line, equation (17) is not generally applicable although it
is possible to divide the motion into small steps, such that the force and
motion are well approximated as being constant for each step, and then to
express the overall work as the sum over these steps. Mathematically, the
calculation of the work needs the evaluation of the following line integral:

WC =

∫
C

F · ds, (19)

where C is the path or curve traversed by the object; F is the force vector;
and s is the position vector. Note that the result of the above integral de-
pends on the path and only from the endpoints. This is typical for systems
in which losses (e.g. friction) are present (similarly as the actual fare of a
taxi from point A to B depends heavily on the route the driver chooses).
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1.9 Energy

Energy is a quantity that is often understood as the ability to perform
work. This quantity can be assigned to any particle, object, or system of
objects as a consequence of its physical state.

Energy is a scalar physical quantity. In the International System of Units
(SI), energy is measured in joules, but in some fields other units such as
kilowatt-hours and kilocalories are also used. Different forms of energy in-
clude kinetic, potential, thermal, gravitational, sound, elastic and electro-
magnetic energy.

Any form of energy can be transformed into another form. When energy
is in a form other than thermal energy, it may be transformed with good or
even perfect efficiency, to any other type of energy, however, during this con-
version a portion of energy is usually lost because of losses such as friction,
imperfect heat isolation, etc.

In mechanical engineering, we are mostly concerned with the following
types of energy:

• potential energy: Ep = mgh

• kinetic energy: Ek = 1
2mv

2

• internal energy: Et = cpmT (with a huge number of simplifications...)

Although the total energy of an isolated system does not change with
time1, its value may depend on the frame of reference. For example, a seated
passenger in a moving airplane has zero kinetic energy relative to the air-
plane, but non-zero kinetic energy (and higher total energy) relative to the
Earth.

A closed system interacts with its surrounding with mechanical work
(W ) and heat transfer (Q). Due to this interaction, the energy of the system
changes:

∆E = W +Q, (20)

where work is positive if the system’s energy increases (e.g. by lifting ob-
jects their potential energy increases) and heat transfer is positive if the
temperature of the system increases.

1There is a fact, or if you wish, a law, governing all natural phenomena that are known
to date. There is no known exception to this lawit is exact so far as we know. The law is
called the conservation of energy. It states that there is a certain quantity, which we call
energy, that does not change in manifold changes which nature undergoes. That is a most
abstract idea, because it is a mathematical principle; it says that there is a numerical
quantity which does not change when something happens. It is not a description of a
mechanism, or anything concrete; it is just a strange fact that we can calculate some
number and when we finish watching nature go through her tricks and calculate the
number again, it is the same. The Feynman Lectures on Physics
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1.10 Power

Power is the rate at which work is performed or energy is converted. If
∆W is the amount of work performed during a period of time of duration
∆t, the average power P over that period is given by

P =
∆W

∆t
. (21)

The average power is often simply called ”power” when the context makes
it clear.

The instantaneous power is then the limiting value of the average power
as the time interval ∆t approaches zero. In the case of constant power P ,
the amount of work performed during a period of duration T is W = PT .
Depending on the actual machine, we have

mechanical (linear motion) power: P = Fv
[
N m

s

]
mechanical (circular motion) power: P = Mω

[
Nm rad

s

]
electrical power: P = UI [V A]

hydraulic power: P = Q∆p
[
m3

s Pa
]

The dimension of power is energy divided by time J/s. The SI unit of
power is the watt (W), which is equal to one joule per second. A common
non-SI unit of power is horsepower (hp), 1hp = 0.73549875kW .

1.11 Problems

Problem 1.1 A spring with stiffness s = 100N/mm is compressed from
its initial length of L0 = 20cm to L1 = 10cm.

• Calculate the force. (F = 10kN)

• Calculate the work. (W = 0.5kJ)

Problem 1.2 We drive by car for 4 hours, after which we refuel 32l
of gasoline. The car has a 55kW motor (75hp) and it can be assumed that
during the journey this was the useful power. The heating value of gasoline
is 35MJ/l.

• Calculate the useful work (Wu = 220kWh = 792MJ), input energy
(Ei = 1120MJ) and efficiency (η = 70.7%).

Problem 1.3 A 210MW coal plant consumes 4100t of coal per day. The
heating value of lignite is 17MJ/kg.
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• Calculate the efficiency of the plant (η = 26%).

Worked problem 1.4 A rotating wheel of a vehicle is stopped by two
brakes as seen in Figure 1. The friction coefficient is µ = 0.13, the diameter
of the wheel is 910mm, the initial velocity of the vehicle was 65km/h. The
pushing force is F = 6000N .

Fs

Fs

D

m

F F

o

Figure 1: Braking a rotating wheel.

• Calculate the friction force.
Ff = µF = 0.78kN .

• Calculate the (overall) braking torque acting on the wheel.
Mf = 2× Ff D2 = 0.7098kNm

• Calculate the power of braking at the start of the breaking.
P = Mfω0 = Mf

2v0
D = 28.17kW

• Assuming constant torque and linearly decreasing velocity (i.e. con-
stant deceleration), compute the time needed to stop a 20t vehicle
with six braked weels.
The initial kinetic energy of the vehicle is Ek = 1

2mv
2
0 = 3.26MJ .

The overall work done by the six brakes W = 6 ×MfT
ω
2 (T is yet

unknown).
The initial kinetic energy is fully dissipated by the braking work:
Ek = W → T = 38.6s
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2 Steady-state operation of machines

2.1 The sliding friction force due to dry friction

Dry friction resists relative lateral motion of two solid surfaces in con-
tact. The two regimes of dry friction are static friction between non-moving
surfaces, and kinetic friction (sometimes called sliding friction or dynamic
friction) between moving surfaces. Coulomb friction is an approximate model
used to calculate the force of dry friction:

|Ff | ≤ µN. (22)

where

• Ff is the force exerted by friction (in the case of equality, the maximum
possible magnitude of this force).

• µ is the coefficient of friction, which is an empirical property of the
contacting materials,

• N is the normal force exerted between the surfaces.

The Coulomb friction may take any value from zero up to µN , and the
direction of the frictional force against a surface is opposite to the motion
that surface would experience in the absence of friction. Thus, in the static
case, the frictional force is exactly what it must be in order to prevent motion
between the surfaces; it balances the net force tending to cause such motion.
In this case, rather than providing an estimate of the actual frictional force,
the Coulomb approximation provides a threshold value for this force, above
which motion would commence. This maximum force is known as traction.

The force of friction is always exerted in a direction that opposes move-
ment (for kinetic friction) or potential movement (for static friction) between
the two surfaces. For example, a curling stone sliding along the ice experi-
ences a kinetic force slowing it down. For an example of potential movement,
the drive wheels of an accelerating car experience a frictional force pointing
forward; if they did not, the wheels would spin, and the rubber would slide
backwards along the pavement. Note that it is not the direction of move-
ment of the vehicle they oppose, it is the direction of (potential) sliding
between tire and road. In the case of kinetic friction, the direction of the
friction force may or may not match the direction of motion: a block sliding
atop a table with rectilinear motion is subject to friction directed along the
line of motion; an automobile making a turn is subject to friction acting
perpendicular to the line of motion (in which case it is said to be ’normal’
to it). The direction of the static friction force can be visualized as directly
opposed to the force that would otherwise cause motion, were it not for the
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Materials Dry and clean Lubricated

Aluminum Steel 0.61

Copper Steel 0.53

Brass Steel 0.51

Cast iron Copper 1.05

Cast iron Zinc 0.85

Concrete (wet) Rubber 0.30

Concrete (dry) Rubber 1.0

Concrete Wood 0.62

Copper Glass 0.68

Glass Glass 0.94

Metal Wood 0.2-0.6 0.2

Polythene Steel 0.2 0.2

Steel Steel 0.80 0.16

Steel Teflon 0.04 0.04

Teflon Teflon 0.04 0.04

Wood Wood 0.25-0.5 0.2

Table 3: Approximate coefficients of friction

static friction preventing motion. In this case, the friction force exactly can-
cels the applied force, so the net force given by the vector sum, equals zero.
It is important to note that in all cases, Newton’s first law of motion holds.

2.2 Rolling resistance

Rolling resistance, sometimes called rolling friction or rolling drag, is the
resistance that occurs when a round object such as a ball or tire rolls on
a flat surface, in steady velocity straight line motion. It is caused mainly
by the deformation of the object, the deformation of the surface, or both.
(Additional contributing factors include wheel radius, forward speed, sur-
face adhesion, and relative micro-sliding between the surfaces of contact.)
It depends very much on the material of the wheel or tire and the sort of
ground.

For example, rubber will give a bigger rolling resistance than steel. Also,
sand on the ground will give more rolling resistance than concrete. A moving
wheeled vehicle will gradually slow down due to rolling resistance including
that of the bearings, but a train car with steel wheels running on steel rails
will roll farther than a bus of the same mass with rubber tires running on
tarmac. The coefficient of rolling resistance is generally much smaller for
tires or balls than the coefficient of sliding friction.
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R

N

F

aR

b

Figure 2: Hard wheel rolling on and deforming a soft surface.

The force of rolling resistance can also be calculated by:

F =
Nb

R
= CrrN (23)

where

• F is the rolling resistance force,

• R is the wheel radius,

• b is the rolling resistance coefficient or coefficient of rolling friction
with dimension of length,

• Crr = b/R is the coefficient of rolling resistance (dimensionless num-
ber), and

• N is the normal force.

Crr b Description

0.0002...0.0010 0.5 mm Railroad steel wheel on steel rail

0.1mm Hardened steel ball bearings on steel

0.0025 Special Michelin solar car/eco-marathon tires

0.005 Tram rails standard dirty with straights and
curves[citation needed]

0.0055 Typical BMX bicycle tires used for solar cars

0.0062...0.015 Car tire measurements

0.010...0.015 Ordinary car tires on concrete

0.3 Ordinary car tires on sand

Table 4: Approximate coefficients of rolling resistance

In usual cases, the normal force on a single tire will be the mass of the
object that the tires are supporting divided by the number of wheels, plus
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the mass of the wheel, times the gravitational acceleration. In other words,
the normal force is equal to the weight of the object being supported, if the
wheel is on a horizontal surface.

2.3 Statics of objects on inclined planes (restoring forces)

To calculate the forces on an object placed on an inclined plane, consider
the three forces acting on it:

• The normal force (N) exerted on the body by the plane due to the
force of gravity,

• The force due to gravity (mg, acting vertically downwards) and

• the frictional force (Ff ) acting parallel to the plane.

We can decompose the gravitational force into two vectors, one perpendic-
ular to the plane and one parallel to the plane. Since there is no movement
perpendicular to the plane, the component of the gravitational force in this
direction (mg cosα) must be equal and opposite to normal force exerted by
the plane, N plus the normal component of the force F :

mg cosα = F sinβ +N. (24)

The remaining component of the gravitational force parallel to the surface
(mg sinα) plus the friction force equals the the ”pulling” force Ft:

mg sinα+ Ff = F cosβ (25)

By definition, the friction force is

Ff = µN. (26)

a

Ff

N

G

a

b

F

n

t

Figure 3: Object on an inclined plane.
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Combining these three equations, we arrive at the following equation for
the traction force F :

F = mg
sinα+ µ cosα

cosβ + µ sinβ
. (27)

Let us describe the three different cases while varying the force:

• If the actual traction force is smaller than F (but positive), the object
is at rest. The value of the friction force is such that the body stays
at rest: Ff = mg sinα and points upwards to balance the tangential
component of G.

• If the traction force is exactly F , the body is either at rest or moves
with constant arbitrary velocity.

• Finally, for traction force values beyond F the object experiences a
constant acceleration.

One might want to compute the β∗ angle for which the smallest F force
is needed to move the object:

0 =
dF

dβ
= mg (sinα+ µ cosα)︸ ︷︷ ︸

const.

d

dβ
(cosβ + µ sinβ)−1

= const.(−1)
− sinβ∗ + µ cosβ∗

(cosβ∗ + µ sinβ∗)−2
. → β∗ = arctanµ (28)

Note that our equations are valid only if N > 0, i.e.

G cosα ≥ Fmax sinβ (29)

In other words, the maximal βmax value before the force F lifts the object
is (the condition is F = Fmax):

sinα+ µ cosα

cosβmax + µ sinβmax
=

cosα

sinβmax
→ βmax = arc cot (tanα) =

π

2
− α.

(30)

Finally, let us define the efficiency of the traction. The useful work is the
vertical displacement ∆h = L sinα while the input work is the work done
by tangential component of the force, i.e. Ft:

η =
∆Epot
WFt

=
mg∆h

FtL
=

mgL sinα

mgL sinα+ FfL
, (31)

whose maximum value occurs if Ff = 0, i.e. when the normal component
vanishes. Hence the maximum-efficiency point corresponds to the βmax an-
gle, i.e. when the normal component of force F balances the gravity and no
friction occurs.
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Figure 4: Solid line: the traction force needed as a function of β, see (27).
Dashed line: the lift-up force given by (29). The friction coefficient is µ = 0.1.

2.4 Pulley

2.4.1 Pulley without friction

A pulley, also called a sheave or a drum, is a mechanism composed of
a wheel on an axle or shaft that may have a groove between two flanges
around its circumference. A rope, cable, belt, or chain usually runs over the
wheel and inside the groove, if present. Pulleys are used to change the direc-
tion of an applied force, transmit rotational motion, or realize a mechanical
advantage in either a linear or rotational system of motion. It is one of the
six simple machines. Two or more pulleys together are called a block and
tackle.

The different types of pulley systems are:

Fixed A fixed pulley has a fixed axle. That is, the axle is ”fixed” or anchored
in place. A fixed pulley is used to change the direction of the force on
a rope (called a belt).

Movable A movable pulley has a free axle. That is, the axle is ”free” to
move in space. A movable pulley is used to multiply forces.

Compound A compound pulley is a combination of a fixed and a movable
pulley system. The block and tackle is a type of compound pulley
where several pulleys are mounted on each axle, further increasing the
mechanical advantage.

19



Figure 5: (Left) Pulley systems. (Right) Each student finding a mistake in
the cartoon gets extra 10% in the exam.

It is important to note that as long as the friction due to sliding friction
in the system where cable meets pulley and in the rotational mechanism of
each pulley is neglected, the change in the potential energy of the weight
G∆h and the lifting work F∆s are equal.

2.4.2 Pulley with friction

Figure 6 depicts a pulley with friction between the bearing and the shaft.
F1 represents the load force (in this case, one lifts a mass) while F2,v and
F2,h shows two possible pulling directions. The friction force is

Ff = µN, where N =

{
F1 + F2,v for vertical arrangement, and√
F 2

1 + F 2
2,h for vertical arrangement.

(32)
The torque equilibrium is given by

F2R = F1R+ µNr (33)

In the case of vertical arrangement, this leads to

F2,v = F1
1 + µ r

R

1− µ r
R

(34)

TODO: horizontal

2.5 Friction drive and belt drive

The friction drive (see the left-hand side of Figure 7) or friction engine
is a type of transmission that, instead of a chain and sprockets, uses two
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Figure 7: (left) friction drive (right) belt drive.

wheels in the transmission to transfer power to the driving wheels. This
kind of transmission is often used on scooters, mainly go-peds, in place of a
chain.

The friction force transmitting the power is

Ff = F1 = µFcl, (35)

where Fcl is the clamping force, i.e. the force pushing the two gears against
each other.

The belt drive (see the right-hand side of Figure 7) uses a belt, i.e. a loop
of flexible material used to link two or more rotating shafts mechanically.
Belts are looped over pulleys. In a two pulley system, the belt can either
drive the pulleys in the same direction, or the belt may be crossed, so that
the direction of the shafts is opposite. As a source of motion, a conveyor
belt is one application where the belt is adapted to continually carry a load
between two points.
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Belt friction is a physical property observed from the forces acting on a
belt wrapped around a pulley, when one end is being pulled. The equation
used to model belt friction is, assuming the belt has no mass and its material
is a fixed composition:

T2 = T1e
µsβ, (36)

where T2 is the tension of the pulling side, which is typically the greater
force, T1 is the tension of the resisting side, µs is the static friction coefficient,
which has no units, and β is the angle, in radians formed by the first and last
spots the belt touches the pulley, with the vertex at the center of the pulley.
The tension on the pulling side has the ability to increase exponentially if
the size of the angle increases (e.g. it is wrapped around the pulley segment
numerous times) and as the coefficient of friction grows. The force needed
to be applied to the shaft is

Fcl = T1 + T2 = T1

(
1 + eµsβ

)
, (37)

while the friction force transferring the driving torque is

Ff =
M1

R1
= T1 − T2 =

(T1 − T2)(T1 + T2)

T1 + T2
=
T 2

1

(
1− T 2

2

T 2
1

)
T1 (1 + eµsβ)

= T1

(
1− e2µsβ

)
(1 + eµsβ)

= Fcl

(
1− e2µsβ

)
(1 + eµsβ)

2︸ ︷︷ ︸
µ

(38)

Thus, for both drives, the connection between the clamping and friction
force is given by Ff = µFcl. •

For both drives, the gear ratio of the transmission is given defined as

i =
n1

n2
=
ω1

ω2
. (39)

The input power on the driving gear is P1 = Ffv1 = M1ω1, the output
power is P2 = Ffv2 = M2ω2. In the practical cases there is a slip between
the driving and the driven machine:

s =
v1 − v2

v1
= 1− v2

v1
. (40)

The torque, revolution number and power of the driving machine are M1,
n1 and P1, respectively. On the driven side, we have

M2 = FfR2 = FfR1
R2

R1
= M1

R2

R1
, (41)

n2 =
ω2

2π
=

v2

R22π
= (1− s) v1

R12π

R1

R2
= n1(1− s)R1

R2
and (42)

P2 = M2ω2 = P1(1− s), (43)
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with which the efficiency of the drive is

η =
P2

P1
=
v2

v1
=
v1 − (v1 − v2)

v2
= 1− s. (44)

2.6 Load factor, efficiency and losses of machines

The nominal (useful) power or rated power is the output power a machine
was designed for. This number is fixed, usually given on the nameplate. For
example, we often say that ”the power of a car is 120 hp ”or ”a 60kW electric
motor is built into the system”. This is the nominal power of the machine,
but it should be clear that this is not the only power the machine is capable
of producing; e.g. when we sit in our car in a traffic jam with running motor,
the output power is zero.

The load factor x is defined as the ratio of the actual useful power and
the nominal power:

x =
Pu
Pn
. (45)

Thus, if Pu < Pn, we speak about under load and the case when Pu > Pn
is called over load. If there is no useful work (e.g. the car is at rest but
the motor runs or the computer is switched on but no user programs are
running), we speak about idle run.

It is important to know how the efficiency of the machine depends on
the load factor. The input work covers the useful work plus the losses:

Pi(nput) = Pu(seful) + Pl(oss) (46)

The loss consists of two parts; one being independent of the load (constant
loss, Pc) and the other increasing with increasing load (variable loss, Pv):

Pl(x) = Pc(onstant) + Pv(ariable)(x) (47)

An example of constant loss is friction of the rotating parts (e.g. bearings),
which has to be covered even in idle run. An example of variable loss is the
increasing heat generated as the load increases. We have

Pv = xnPv0, (48)

where Pv0 is some constant and

• n ≈ 1 for mechanical machines (e.g. pulley)

• n ≈ 2 for electronic machines (e.g. electric motor) and

• n ≈ 3 for hydraulic machines (e.g. pump, fan).
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The above relations allow us to give the efficiency as a function of the
load factor:

η(x) =
Pu
Pi

=
xPn

xPn︸︷︷︸
useful

+Pc + xnPv0︸ ︷︷ ︸
losses

(49)

Let us find the load with maximum-efficiency:

0 =
dη(x)

dx
=

d

dx

f(x)︷︸︸︷
xPn

xPn + Pc + xnPv0︸ ︷︷ ︸
g(x)

(
=
f ′g − g′f

g2

)

=
Pn (xPn + Pc + xnPv0)− xPn

(
Pn + nxn−1Pv0

)
(xPn + Pc + xnPv0)2

=
Pn (Pc + (1− n)xnPv0)

(xPn + Pc + xnPv0)2 → Pc = (n− 1)xnPv0 (50)

Thus, we find that

for mechanical machines (n=1) there is no best-efficiency point but ef-
ficiency increases as the load is increased and η → 100% as x→∞.

for electric machines (n=2) we have Pc = x2
optPv0, i.e. at the best-efficiency

point the constant and variable losses equal. In other words, xopt =√
Pc/Pv0.

for hydraulic machines (n=3) we have Pc = 2x3
optPv0, i.e. at the best-

efficiency point the constant loss is the double of the variable loss. In
other words, xopt = 3

√
Pc/(2Pv0).

TODO: graphs

2.7 Average load and efficiency

Suppose that a machine runs at several loads during some period of time,
but with constant load in each intervals. For example, from 8am to 10am
x=50%, from 10am to 1pm x=90%, from 1pm to 2pm x=0% (launchtime)
and finally, from 2pm to 5pm 110%. We wish to calculate the average load x
and efficiency η during the day. Both of them will be defined with the help
of work as follows:

η =
Wuseful

Winput
and x =

Wuseful

Wnominal
(51)

If we have N periods and the length of the ith period is denoted by ti
and the (constant) load and efficiency is xi and ηi, we have
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x =
Wuseful

Wnominal
=

∑N
i=1 tiPu,i∑N
i=1 tiPn

=

∑N
i=1 tixi��Pn∑N
i=1 ti��Pn

=

∑N
i=1 tixi∑N
i=1 ti

(52)

and

η =
Wuseful

Winput
=

∑N
i=1 tiPu,i∑N
i=1 tiPi,i

∣∣∣∣∣
ηi 6=0

=

∑N
i=1 tiPu,i∑N
i=1 ti

Pu,i
ηi

=

∑N
i=1 tixi∑N
i=1

tixi
ηi

(53)

Note that the last expression of the above equation for η (including tixi/ηi)
is only valid if ηi 6= 0, i.e. there is no idle operation during the intervals!

2.8 Problems

Force components, inclined plane

Problem 2.1 A timber with mass m = 150kg is pulled horizontally on
a flat dirty road. The pulling chain is fixed to the centre of gravity of the
timber. The coefficient of friction between the the wood and the ground is
µ = 0.48. Find the force needed to pull the timber! (F = 706.3N)

Problem 2.2 Find the tractive force needed to tow a car with mass
m = 2000kg upwards on slope whose gradient is 4% if the rolling resistance
is Crr = 0.028 and the angle between the force and the plane of the slope
is β = 30◦. (F = 1515N) Calculate the tractive power if the velocity of the
towing is v = 50km/h. (18.22kW)

Problem 2.3 There is a ramp whose gradient is adjustable and a mass
m = 50kg on it at rest. The slope of the ramp is slowly increased and
continuously measured. It is found that at α = 7◦ the weight begins to
move.

• Calculate the the coefficient of static friction and the friction force!
(µs = 0.12, Ff = 59.78N)

• Express the general relation between the angle of the slope and the
coefficient of static friction.

• Find the friction force when the angel of the slope is α = 3◦. (Ff =
25.67N)

Problem 2.4 A car with mass m = 1200kg, is pushed upwards on a
slope with constant velocity. The gradient of the slope is 6% and the angle
between the pushing force (F = 1100N) and the horizontal direction is
γ = 10◦. Calculate the rolling resistance, the work performed on a 500m
long distance and the part of it, that is invested in to overtake the friction!
(Crr = 0.03, W = 534.95kJ, Wf = 182.39kJ)

Friction drive
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Problem 2.5 How much power can be transmitted with a friction drive,
if the coefficient of friction between the wheels is µ = 0.37? The diameter
of the driven wheel is D = 45mm, its revolution number is n = 120rpm,
and the clamping force is F = 238N. There is no slip between the wheels.
(P = 24.9W)

Problem 2.6 P = 0.4kW power is to be transmitted with a friction
drive. The wheels are supposed to roll without slip. The coefficient of friction
between the wheels is µ = 0.4. The diameter of the driven wheel is D2 =
16cm and the applied gear ratio is i = 2.1 (i.e. reducing translation).

• Find the diameter of the driving wheel! (D1 = 7.62cm)

• Find the clamping force (the force pushing the two fears against each
other) if the revolution number of the driving shaft is n = 2010rpm!
(F = 124.7N)

Belt drive

Problem 2.7 An electric motor of 14kW and 1460rpm drives a machine
via a flat belt drive.

• Find the diameter of the driving pulley, if the maximal allowed belt
velocity is 30m/s.

• Find the diameter of the driven pulley, if the desired translation is 2
(i.e. decelerating translation) and we are expecting 3% slip.

• Find the torque of the driven pulley.

Pulley

Problem 2.8 An electric motor drives a pulley system consisting of two
standing and two moving pulleys. The system lifts a mass of 2t, the lift
speed is 10 cm/s. The losses of the system can be neglected.

• Find the rope force (4.91N) and the power need of the lift (P =
1.96W).

• Assuming 10cm pulley radius, find the required motor torque (491Nm)
and revolution number (38.2 rpm).

Load factor, losses

Problem 2.9 The efficiency of an electric generator as a function of
the output power has been measured. At full load the useful power was
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Pu,x=1 = 380kW while the efficiency was η = 95%. The same efficiency
was measured when the output power was 200kW. Find the constant and
variable loss at full load. (Pc = 6.9kW, Pv,x=1 = 13.1kW)

Problem 2.10 The useful power of an elevator is Pu = 4kW, the effi-
ciency at this point is η = 66%. The nominal useful power of the elevator
is PN = 6.4kW, while the constant loss is Pc = 0.8kW. The variable loss is
linearly proportional to the load, i.e. the machine is mechanical. Find the
variable loss at full load. (Pv,x=1 = 2.02kW) Calculate the efficiency at full,
half, and quarter loads. (ηx=1 = 69.4%, ηx=0.5 = 63.9%, ηx=0.25 = 55%)

Problem 2.11 Pu = 140kW useful power is given by a transformer at
full load, while its input power is Pi = 148kW. The transformer reaches its
optimal efficiency at x = 60% load. Find the constant loss of the transformer.
(Pc = 2.12kW) Find the optimal efficiency. (ηopt = 95.2%)

Average power and efficiency

Problem 2.12 A machine repeats a complete working cycle periodically
that lasts for t = 40min. During the working period the input power is Pi,w =
8kW and the efficiency is ηw = 79%. Between two working periods, while
the work piece is replaced, the machine runs idle with a power consumption
of Pi,i = 1.3kW.

• Find the time available for the replacement of the work piece if a
minimum of ηavg = 75% average efficiency must be kept. (t = 9.9min)

• Find the average load factor if the time of the replacement reduces to
t = 8min. (xavg = 80%)

Problem 2.13 A prime mover works daily for t1 = 4h at full load with
an efficiency of η1 = 78%, t2 = 3h with a load factor of x2 = 0.8 and an
efficiency of η2 = 76%, and t3 = 1h with a load factor of x3 = 0.3 and an
efficiency of η3 = 56%. Find the average load factor and average efficiency.
(xavg = 0.838, ηavg = 76%)
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3 Fluid mechanics

3.1 Introduction

In many engineering systems we come across machines, which either
do work on fluids (pumps, compressors, ventilators) or extract energy from
fluids (water turbines or wind turbines). Examples of fluids include gases
and liquids. Typically, liquids are considered to be incompressible, whereas
gases are considered to be compressible. However, there are exceptions in
everyday engineering applications (we shall return to this issue later). By
definition, a fluid is a material continuum that is unable to withstand a
static shear stress. Unlike an elastic solid which responds to a shear stress
with a recoverable deformation, a fluid responds with an irrecoverable flow.
The following physical quantities are of great importance:

Pressure (symbol: p, SI unit: Pa = N/m2 = kg/(ms2)) is the force per
unit area applied in a direction perpendicular to the surface of an
object: p = F/A.

Density (symbol: ρ, SI unit: kg/m3) is defined as mass per unit volume,
ρ = m/V . The density of a substance is the reciprocal of its specific
volume ν, a representation commonly used in thermodynamics.

Compressibility is a measure of the relative volume change of a fluid as a
response to a pressure change.

Ideal fluids are homogeneous, incompressible and no internal friction
occurs. In many practical cases, liquids can be considered to be ideal fluids.

Real fluids are compressible. For example, for air, we know from the
ideal gas law that ρ = p/(RT ), thus if air is compressed from 1 bar to 2 bar
pressure by an isothermal process (i.e. temperature remains constant), its
density will double. For liquids, we have ∆p/B = ∆V/V , where ∆p is the
pressure change, V is the initial volume, ∆V is the volume change and B is
the bulk modulus. For example, for water Bw = 2.1× 109Pa = 2.1 GPa and
for steel Bs = 160 GPa.

Friction is also present in real fluids, which manifests itself in pressure
loss. This simply means that e.g. the pressure along a horizontal pipe de-
creases in the direction of flow. This is an important issue that must be
taken into account when dealing with fluid flow systems.

Pressure scales. If the term ’pressure’ is used, it means absolute pressure,
whose zero point is the (full) vacuum. Often we deal with relative (or gauge)
pressure pr, which is the pressure relative to the ambient pressure p0 =
105Pa:

pr = p− p0. (54)
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Note that relative pressure can be negative, meaning vacuum. A third way
or representing (vacuum) pressure is relative vacuum:

rel.vac. =
p0 − p
p0

× 100% (55)

Thus 0% relative vacuum means ambient pressure p0 and 100% relative
vacuum means that p = 0 (pr = −105)Pa.

TODO: graph of pressure scales.

3.2 Mass conservation - law of continuity

In fluid mechanics, mass conservation means that, under steady-state
conditions, the amount of material entering and leaving a system per unit
time equals. We define mass flow rate as the mass of substance which passes
through a given surface per unit time and it can be calculated from the den-
sity of the substance, the cross sectional area through which the substance
is flowing, and its velocity relative to the area of interest:

ṁ = ρAv⊥, (56)

where ṁ is the mass flow rate (kg/s), ρ is the density, v⊥ is the velocity com-
ponent perpendicular to A and A is the flow-through area. This is equivalent
to multiplying the volumetric flow rate Q by the density:

ṁ = ρQ, (57)

where Q is the volumetric flow rate, its SI unit is m3/s.

3.3 Energy conservation - Bernoulli’s equation

Bernoulli’s principle can be derived from the principle of conservation of
energy. This states that in a steady flow the sum of all forms of mechan-
ical energy in a fluid along a streamline is the same at all points on that
streamline:

1

2
mv2︸ ︷︷ ︸

kinetic energy

+ mgh︸︷︷︸
potential energy

+ pV︸︷︷︸
work done by pressure

= constant. (58)

However, the above equation is not useful in fluid mechanics, as it is not
clear what is meant by the velocity of the fluid of mass m - the velocity
changes in any small volume of fluid. Thus, we divide the above equation
by V to obtain the energy content of an arbitrarily small volume:

ρ

2
v2 + ρgh+ p = constant. (59)
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Let us consider two points on a streamline (the path of a fluid particle),
denoted by 1 and 2, the flow is from 1 to 2. Than, if the fluid is ideal (no
friction and incompressible) and the flow is steady, we have

p1 +
ρ

2
v2

1 + ρgh1 = p2 +
ρ

2
v2

2 + ρgh2. (60)

3.4 Application 1 - flow in a confuser

Consider the flow in a pipe of decreasing diameter (confuser). The di-
ameter of the inlet is D1, the pressure and velocity of the fluid is p1 and v1.
The diameter of the outlet is D2 < D1, the pressure and velocity of the fluid
here is p2 and v2.

By virtue of the continuity equation, we have

ρv1A1 = ρv2A2 = ρQ, (61)

which implies that as A2 < A1, v2 > v1. Applying Bernoulli’s equation
between points 1 and 2, we obtain

p1 +
ρ

2
v2

1 +���ρgh1 = p2 +
ρ

2
v2

2 +���ρgh2, (62)

from which wee see that if v2 > v1, we have p2 < p1.

d
1

d
1

v1

v2

p1 p2

p11

p22

Figure 8: Flow in a confuser.

3.5 Application 2 - pressure measurement with U-tube

TODO
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3.6 Problems

Problem 3.1 There is a given absolute pressure of p = 420mbar. Cal-
culate the gauge pressure in pascals and the relative vacuum in percentage!
(pg = −58kPa, rel.vac = 58%)

Problem 3.2 The plunger of a hypodermic syringe is pressed with a
constant velocity of v1 = 0.9cm/s. The diameter of the plunger isD = 1.2cm,
while the radius of the hollow in the needle is r = 0.4mm (see Fig.9). Find
the velocity of the fluid exits at the end of the needle! (v2 = 2.025m/s)

Figure 9: Sketch of Problem 3.2

Problem 3.3 Water flows through a tapering pipe with a volumetric
flow rate of Q = 115dm3/min. The radius at the beginning of the pipe is
r1 = 62mm, while the diameter at the end is D2 = 46.2mm. Calculate the
velocities at both ends! (v1 = 0.159m/s, v2 = 1.143m/s)

Problem 3.4 Air with a temperature of T1 = 90◦C and a velocity of
v1 = 15m/s enters into a cylindrical tube of a heat exchanger. The diameter
of the tube is d = 130mm. At the outlet of the heat exchanger the air is
cooled down to T2 = 20◦C. The pressure can be assumed constant along
the whole tube. According to measurements the density of the air is given
in the form: ρ[kg/m3] = 352.977/T [K]. Calculate the velocity and the mass
flow rate at the end of the tube! (v2 = 12.1m/s, ṁ = 0.194kg/s)

Problem 3.5 A compressor compresses air from p0 = 101.325kPa to
p1 = 25bar. The mass flow rate is ṁ = 30kg/s and the change of state is
isotherm. Calculate the density at the pressure side if it is ρ0 = 1.2041kg/m3

at the suction side and is given by the function ρ(p) = ρ0(p/p0)0.714! (ρ1 =
11.877kg/m3) Find the velocities and volume flow rates at the suction and
pressure side if the diameters of the connected pipes are D0 = 900mm and
D1 = 400mm respectively! (v0 = 39.16m/s, v1 = 20.1m/s, Q0 = 24.91m3/s,
andQ1 = 2.53m3/s)

Problem 3.6 There is mercury with a density of ρm = 13600kg/m3 in
a U-tube manometer whose both sides are open. How high water column
(ρw = 1000kg/m3) is needed to reach a hm = 16mm difference between the
levels of mercury in the two sides? (hw = 218mm)
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Problem 3.7 There is a U-shaped glass tube filled partially with mer-
cury (ρm = 13600 kg/m3). One side of the tube is opened while the other
is closed. In the closed side the level of the mercury is ∆h = 153mm higher
than the level in the opened side. Calculate the pressure in the closed side
above the mercury if the atmospheric pressure is p0 = 99kPa! (p = 78.6kPa)

Problem 3.8 The barometer invented by Torricelli consists of a tube
circa 1 meter long, sealed at the top end, filled with mercury, which is
set vertically into a basin of mercury (see Fig.10). The pressure above the
mercury in the tube can be neglected. Calculate the height of the mercury
column (ρm = 13600kg/m3) in the tube of the barometer on a z = 2000m
high hill if the atmospheric pressure at the sea level is p0 = 101.325kPa
and the isothermal atmosphere model can be used for the pressure (i.e.
p(z) = p0e

−1.166·10−4z at T = 20◦C)! (hm = 601mm)

Figure 10: Sketch of Problem 3.8

Problem 3.9 Water (ρw = 1000kg/m3) flows through a pipe with a
diameter of d = 50mm. The volume flow rate is Q = 72dm3/min and there
is a height difference of h = 3.5m between the two ends of the pipe. The
fluid flows upwards. Calculate the velocity and the pressure at the higher
end if the pressure at the other end is p1 = 4bar! (v2 = v1 = 0.61m/s, p2 =
365.7kPa)

Problem 3.10 There is a tank filled with water (ρw = 1000kg/m3).
The top of the tank is opened to the air, while there is a small outlet at
the bottom (See Fig.11). The cross sectional area of the outlet is negligible
comparing to the open surface of the water. Find the velocity of the water
at the outlet if the water level is h = 2m high! Express the velocity as a
function of the height of the water level! (v2 = 6.26m/s, v2(h) =

√
2gh)

Problem 3.11 Water (ρw = 1000kg/m3) flows horizontally with a ve-
locity of v = 5m/s. An L-shaped tube is placed into the flow as can be
seen in Fig.12. Determine difference between the level in the tube and
the surface of the flow! (h = 1.27m/s) Calculate the gauge pressure at
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Figure 11: Sketch of Problem 3.10

the level of the leg of the tube and the stagnation point if z = 0.5m!
(pg,l = 4.9kPa, pg,stag = 17.4kPa)

Figure 12: Sketch of Problem 3.11

Problem 3.12 In problem 3.2 calculate the force needed to press the
plunger if the diameter of the rod is d = 5mm and the atmospheric pressure
is p0 = 1bar! (F = 2.2N)

Problem 3.13 Water (ρw = 1000kg/m3) flows through a rising and
tapering pipeline with a volume flow rate of Q = 30dm3/s (see Fig.13).
The inclination of the pipeline is α = 20◦. The lower side of the pipe
has a diameter of D1 = 200mm, while the diameter of the upper side is
D2 = 140mm. A U-tube manometer filled with mercury (ρm = 13600kg/m3)
is connected to the pipeline. The length between the connection points is
l = 17m. (The transferring fluid is also water.) Calculate the velocities
and the difference between the levels of the mercury in the manometer!
(v1 = 0.95m/s, v2 = 1.95m/s, ∆h = 473mm)
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Figure 13: Sketch of Problem 3.13

4 Some basic types of machines

4.1 Internal combustion engines

The internal combustion engine (ICE) is an engine in which the combus-
tion of a fuel (normally a fossil fuel) occurs with an oxidizer (usually air) in a
combustion chamber. In an internal combustion engine the expansion of the
high-temperature and -pressure gases produced by combustion applies direct
force to some component of the engine, such as pistons, turbine blades, or
a nozzle. This force moves the component over a distance, generating useful
mechanical energy.

The term internal combustion engine usually refers to an engine in which
combustion is intermittent, such as the more familiar four-stroke and two-
stroke piston engines, along with variants, such as the Wankel rotary engine.
A second class of internal combustion engines use continuous combustion:
gas turbines, jet engines and most rocket engines, each of which are internal
combustion engines on the same principle as previously described.

A large number of different designs for ICEs have been developed and
built, with a variety of different strengths and weaknesses. Powered by an
energy-dense fuel (which is very frequently petrol, a liquid derived from fossil
fuels), the ICE delivers an excellent power-to-weight ratio with few disad-
vantages. While there have been and still are many stationary applications,
the real strength of internal combustion engines is in mobile applications
and they dominate as a power supply for cars, aircraft, and boats, from the
smallest to the largest. Only for hand-held power tools do they share part
of the market with battery powered devices.

The operation of the four-stroke ICE (or Otto motor) consists of four
basic steps that repeat with every two revolutions of the engine:

1. Intake Combustible mixtures are emplaced in the combustion chamber
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Figure 14: Operation of the Otto motor

2. Compression The mixtures are placed under pressure

3. Combustion (Power) The mixture is burnt, almost invariably a defla-
gration, although a few systems involve detonation. The hot mixture is
expanded, pressing on and moving parts of the engine and performing
useful work.

4. Exhaust The cooled combustion products are exhausted into the atmo-
sphere.

4.2 Rankine cycle (steam engines)

A Rankine cycle describes a model of steam-operated heat engine most
commonly found in power generation plants. Common heat sources for power
plants using the Rankine cycle are the combustion of coal, natural gas and
oil, and nuclear fission.

There are four processes in the Rankine cycle:

• Process 1-2: The working fluid is pumped from low to high pressure, as
the fluid is a liquid at this stage the pump requires little input energy.

• Process 2-3: The high pressure liquid enters a boiler where it is heated
at constant pressure by an external heat source to become a dry sat-
urated vapour.

• Process 3-4: The dry saturated vapour expands through a turbine,
generating power. This decreases the temperature and pressure of the
vapour, and some condensation may occur.
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Figure 15: Elements of the Otto motor

Figure 16: Indicator diagram of the Otto motor

• Process 4-1: The wet vapour then enters a condenser where it is con-
densed at a constant pressure to become a saturated liquid.
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In an ideal Rankine cycle the pump and turbine would be isentropic, i.e.,
the pump and turbine would generate no loss and hence maximize the net
work output.

Figure 17: Rankine cycle scheme

The power balance of the cycle is as follows. Let h denote the enthalpy
of the fluid

h = u+
p

ρ
+

�
�
�v2

2
+��gh, (63)

where the cancelled terms will be neglected as they are small compared to
the the internal energy u and pressure work p/ρ. The internal energy u is

u = cpT, (64)

where cp[J/(kgK)] is the specific heat capacity of the fluid measured at con-
stant pressure (for water at ambient pressure at t=15oC, cp = 4186J/(kgK)).
The heat Q̇[J/kg] given to the fluid by the boiler changes the enthalpy of
the fluid of mass flow rate ṁ and is obtained by burning ṁfuel mass flow
rate fuel with heat content H[J/kg]:

Q̇ = ṁ(h3 − h2) = ṁfuelH. (65)

The turbine extracts the output energy by decreasing the enthalpy of the
fluid:

Ẇturbine = Pturbine = ṁ(h4 − h3), (66)

and the condenser also extracts heat from the fluid

Q̇out = ṁ(h4 − h3). (67)

The pumping power Ẇpump is around the 1% of the turbine work output,
thus it can be neglected.
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4.3 Problems

Problem 4.1 During the measurement of a furnace the following data
became available. The steam produced per hour is ṁs = 6000kg/h, while
its enthalpy is hs = 3200kJ/kg. The temperature of the feeding water is
tw = 80◦C and the consumption of the coal (H = 13.5MJ/kg) is ṁc =
1.6tons/h. Calculate the efficiency of the furnace if the specific heat capacity
of the water is cp = 4.2kJ/(kgK) and the zero level of enthalpy is at 0◦C!
(η = 79.6%)

Problem 4.2 In a steam boiler ṁs = 2000kg/h steam is produced with
a pressure of ps = 10bar and a temperature of ts = 250◦C from feeding
water with a temperature of tw = 16◦C. The enthalpy of the steam is hs =
2940kJ/kg, where the zero level of the enthalpy is given at 0◦C and the
specific heat capacity of the water is cp = 4.2kJ/(kgK). The efficiency of
the steam boiler is η = 76%. Calculate the mass of coal (H = 12MJ/kg)
needed to be burnt per hour! (ṁc = 630kg/h) During a reformation, the
coal furnace is replaced by an oil furnace. With that change the efficiency
of the steam boiler rises up to η = 80%. Calculate the volume of the oil
tank needed for a one-day-long operation if the heat content of the oil is
H = 40MJ/kg and its density is ρ = 950kg/m3! (V = 4.536m3)

Worked problem 4.3 The sketch of a heat power plant can be seen
in Fig. 18. The power of the electric generator is Peg = 50MW, while its
efficiency is ηeg = 97%. The efficiency of the steam turbine that drives the
generator is ηst = 87%. The enthalpy of the freshly produced steam is h3 =
3370kJ/kg, while its pressure and temperature are p3 = 110bar and t3 =
500◦C respectively. The pressure in the condensator is p4 = 0.04bar, while
the enthalpy of the steam in it is h4 = 2180kJ/kg.

• Calculate the mass flow rate of the steam needed to generate the given
output power of the generator!
ṁs =

Pst,input

∆h =
Peg

ηegηst(h3−h4) = 49.79kg/s = 179.2tons/h

• Find the coal consumption of the steam boiler in tons/hour if its effi-
ciency is ηsb = 80%, the enthalpy of the feed water is h2 = 125kJ/kg,
and the heat content of the coal is H = 20MJ/kg!

ηsb =
Psb,output

Psb,input
= (h3−h2)ṁs

ṁcH
→ ṁc = (h3−h2)ṁs

ηsbH
= 36.344tons/h

• Calculate the efficiency of the heat power plant!
η =

Peg

Psb,input
=

Peg

ṁcH
= 24.8%
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Figure 18: Sketch of the heat power plant in Problem 4.3
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5 Unsteady operation of machines with constant
acceleration

5.1 Introduction

Up to this point, we assumed that the forces (or torques) acting on a
body are in equilibrium. Newton’s second law states that∑

F = ma, (68)

that is, the acceleration of a body is parallel and directly proportional to the
net force F and inversely proportional to the mass m. For rotational motion,
we have ∑

M = θε (69)

In the engineering practice we often come across cases in which the net
force

∑
F is constant. It follows than that the acceleration is also constant,

hence the velocity and the displacement are

v(t) =

∫ t

0
adt = at+ v0 → s(t) =

∫ t

0
v(t)dt =

a

2
t2 + v0t+ s0. (70)

In a similar way, one obtains the following formulae for the angular velocity
and rotation angle:

ω(t) =

∫ t

0
εdt = εt+ ω0 → φ(t) =

∫ t

0
ω(t)dt =

ε

2
t2 + ω0t+ s0. (71)

5.2 Examples of motion with constant acceleration

Example: Acceleration on a inclined plane

Let us reconsider the case of a body placed onto an inclined surface, as
in Section 2.3, but in the absence of external force F . We have

mat = mg sinα− µN 6= 0 and (72)

man = mg cosα+ µN︸︷︷︸
Ff

= 0. (73)

The normal acceleration is zero as the body moves parallel to the plate.
Note that, on the other hand, as the friction force is unable to balance the
tangential component of the gravitational force (remember that the value of
µN is only the maximal possible value of the friction force!), the tangential
acceleration is nonzero. The tangential acceleration is thus

at = g (sinα− µ cosα) . (74)
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Example: Braking of a rotating body

Let us consider a body with moment of inertia θ and initial revolution
number n0 = ω0/(2π). We apply a constant braking force Fb on two brake
drums, the friction coefficient is µ, the drums act on a radius Rb. We have

θε = Mb = −2µFbRb = const. 6= 0 (75)

The negative sign shows that we have deceleration. The angular velocity as
a function of time is

ω(t) = ω0 + εt = ω0 −
2µFbRb

θ
t, (76)

thus the time needed for stopping the motion tstop is

tstop =
ω0θ

2µFbRb
. (77)

The number of revolutions till the body stops is

N =
ϕ(tstop)

2π
=

1

2π

(
ω0tstop −

ε

2
tstop

2
)

(78)
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5.3 Crank mechanism

A crank is an arm attached to a rotating shaft by which reciprocating
motion is imparted to or received from the shaft. It is used to change circular
into reciprocating motion, or reciprocating into circular motion. The arm
may be a bent portion of the shaft, or a separate arm attached to it. Attached
to the end of the crank by a pivot is a rod, usually called a connecting rod.
The end of the rod attached to the crank moves in a circular motion, while
the other end is usually constrained to move in a linear sliding motion, in
and out. The sketch of the crank mechanism is shown in Figure 19. Typical
examples are:

• Mechanical pencil sharpener

• Fishing reel and other reels for cables, wires, ropes, etc.

• Manually operated car window

• The crank set that drives a trikke through its handles.

• The crankset that drives a bicycle via the pedals.

• Treadle sewing machine

• Almost all reciprocating engines use cranks to transform the back-
and-forth motion of the pistons into rotary motion. The cranks are
incorporated into a crankshaft.

L

om

s

connecting rodcrank

y x

fi

Figure 19: Sketch of the crank mechanism.

The displacement of the sliding body is

x(t) = L+R− y(t), where y = R cosϕ+ L

√
1− R2

L2
sin2 ϕ. (79)

We introduce λ = R/L < 0.5. The formula for displacement becomes

x(t) = R

1− cosϕ− 1

λ

(
1−

√
1− λ2 sin2 ϕ.

)
︸ ︷︷ ︸

F (λ)

 , (80)
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where ϕ = ωt. Now we analyze the magnitude of the function F (λ). Note
that if ϕ = 0, we have F = 0 and if ϕ = 90o, F (λ) = (1−

√
1− λ2)/λ. It is

worth noting that, as shown in Table 5, if λ ≤ 0.2, the error by neglecting
this term is less than 10% and if λ ≤ 0.1, the error is less than 5%. The
displacement x(t) as a function of time is shown in Figure 20. Note that the
lines corresponding to λ = 0.1 and λ = 0 coincide within line width. Finally,
after accepting the approx. 10% error (80) simplifies to

x(t) ≈ R (1− cosϕ) , (81)

and the velocity and the acceleration are (ϕ = ωt)

v(t) = Rω sin(ωt) and a(t) = Rω2 cos(ωt). (82)

λ = R/L 0.5 0.4 0.3 0.2 0.1 0.01

F (λ) 0.2679 0.2087 0.1535 0.1010 0.0501 0.0050

Table 5: Value of function F (λ) = (1−
√

1− λ2)/λ for different values of λ.
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Figure 20: Displacement of the crank mechanism.

5.4 Problems

Problem 5.1 A train exhibits a traction force of 150 kN on a 600 m
long path. Meanwhile, the velocity changes from 36 km/h to 54 km/h. The
overall mass of the train is 1000 t. Find the change in the kinetic energy
(62.5 MJ). Find the friction force (45.8 kN).

Problem 5.2 A car’s velocity is 36 km/h, when it starts braking (all
four wheels have brakes!). Assuming a friction coefficient of 0.6, find the
diplacement needed for the stopping (8.5 m).

Problem 5.3 Due to the malfunction of the braking system, a train
gets loose downwards a hill of 11 degree-slope at height 10 m. The rolling
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resistance is 0.08. The initial velocity was 10 m/s. Find the velocity at 0 m
height (14.7 m/s).

Problem 5.4 The moment of inertia of the rotating part of a machine
is 132 kgm2. The initial revolution number is 750 rpm, the braking torque is
310 Nm. Find the time needed to stop the machine (33.4 s) and the number
of revolutions (209 revs.).

Problem 5.5 The disc-like rotating part of a machine is of 0.5 m di-
ameter and 250 kg. The initial revolution number is 1500 rpm, the friction
coefficient in the bearings is 0.04, the radius of the bearing is 50mm (the
radius on which the friction force acts). Find the time until the body stops
if no braking force is applied (253 s). Find the braking torque needed if the
element is to be stopped within 10 seconds (117.8 N).

Problem 5.6 A piston pump is driven by a crank mechanism. The radius
of the crankshaft is 40mm, the revolution number is 120 rpm. The connecting
rod length is large enough to assume λ ≈ 0. The piston diameter is 30mm.
Find the highest flow rate (0.35 liter/s) and the maximum acceleration (6.32
m/s2).
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