
Klapcsik, K., Hegedűs, F. (2019): Study of nonspherical bubble oscillations under acoustic irradiation in viscous liquid. Ultrason. Sonochem., (In Press)

Klapcsik, K., Varga, R., Hegedűs, F. (2018): Biparametric topology of subharmonics of an asymmetric bubble oscillator at high dissipation rate. Nonlinear Dyn., 94(4), pp. 23732389.

Hegedűs, F., Lauterborn, W., Parlitz, U., Mettin, R. (2018): Nonfeedback technique to directly control multistability in nonlinear oscillators by dualfrequency driving. Nonlinear Dyn., 94(1), pp. 273293.

Hegedűs, F., Kalmár, Cs. (2018): Dynamic stabilization of an asymmetric nonlinear bubble oscillator. Nonlinear Dyn., 94(1), pp. 307324.

Klapcsik, K., Hegedűs, F. (2017): The effect of high viscosity on the evolution of the bifurcation set of a periodically excited gas bubble. Chaos Solitons Fract., 104, pp. 198208.

Varga, R., Hegedűs, F. (2016): Classification of the bifurcation structure of a periodically driven gas bubble. Nonlinear Dyn., 86(2), pp. 12391248.

Garen, W., Hegedűs, F., Kai, Y., Koch, S., Meyerer, B., Neu, W., Teubner, U. (2016): Shock wave emission during the collapse of cavitation bubbles. Shock Waves, 26(4), pp. 385394.

Hegedűs, F. (2016): Topological analysis of the periodic structures in a harmonically driven bubble oscillator near Blake's critical threshold: Infinite sequence of twosided Farey ordering trees. Phys. Lett. A, 380(910), pp. 10121022.

Hegedűs, F., Klapcsik, K. (2015): The effect of high viscosity on the collapselike oscillation of a harmonically excited gas bubble. Ultrason. Sonochem., 27, pp. 153164.

Hegedűs, F. (2014): Stable bubble oscillations beyond Blake’s critical threshold. Ultrasonics, 54(4), pp. 11131121.

Hegedűs, F., Koch, S., Garen, W., Pandula, Z., Paál, G., Kullmann, L., Teubner, U. (2013): The effect of high viscosity on compressible and incompressible Rayleigh—Plesset bubble models. Int. J. Heat Fluid Flow, 42, pp. 200208.

Hegedűs, F., Hős, C., Kullmann, L. (2013): Stable period 1,2 and 3 structures of the harmonically excited Rayleigh—Plesset equation applying low ambient pressure. IMA J. Appl. Math., 78(6), pp. 11791195.

Koch, S., Garen, W., Hegedűs, F., Neu, W., Reuter, R., Teubner, U. (2012): Timeresolved measurements of shockinduced cavitation bubbles in liquids. Appl. Phys. BLasers O., 108(2), pp. 345351.

Hegedűs, F., Hős, C., Kullmann, L. (2010): Influence of heat transfer on the dynamic response of a spherical gas/vapour bubble. Int. J. Heat Fluid Flow, 31(6), pp. 10401049.