

Temperaturmessung

Messung 4

Name, Neptun:	
Laborübungleite	r:
Messpersonal:	
Ort der Meßübu	ng:
Datum:	
Unterschrift:	

2. Kurze	Beschreibur	ng der Mess	sung:		
3 Skizza	von der Mel	Reinrichtur	1σ•		
J. SKIZZI	von uci wici	ijemi iemtui	ıg.		

4. Die für die Auswertung notwendigen Formeln:

- Massenstrom (\dot{m}):
- Zeitkonstante (τ):
- Dimensionslose Zeit (t^*) :
- Temperaturerhöhung des durchströmenden Wassers (ΔT):
- Stationäre Temperaturerhöhung (ΔT_{sl}):
- Elektrische Leistung (P_{el}):
- Schätzung der stationären Temperaturerhöhung ($\Delta T_{st} \approx$):
- Dimensionslose Temperaturerhöhung (T^*):

5. Einmal gemessene Größen

- Dichte des Wassers (ρ_w):
- Reduzierte Masse (m_{red}):
- Elektrische Spannung in Skalenteilungen (U'):
- Stromstärke in Skalenteilungen (*I'*):
- Instrumentenkonstante ($c_P = c_U \times c_I$):
- Elektrische Leistung (P_{el}):
- Spezifische Wärme des Wassers (c_w) :
- Temperatur des eintretenden Wassers (T_1) :

6.1. Messung eines Aufwärmungsprozesses:

- Zeitdauer der Wägung (t_W) :
- Volumen vom Meßgefäß (V):
- Massenstrom (\dot{m}):
- Zeitkonstante (τ):

6.2 Gemessene Daten und Auswertung

	Mes	sung		Auswertung	
No.	t	T	ΔT	t*	$T^* = \frac{\Delta T}{\Delta T_{st}}$
	[s]	[°C]	[°C]	[-]	[-]
1.					
2.					
3.					
4.					
5.					
6.					
7.					
8.			$\Delta T_{st} =$		1

6.3 Messung des stationären Zustandes:

6.4 Gemessene Daten und Auswertung

		Messung		Auswe	ertung
No.	V	t_k	T_{st}	\dot{m}	ΔT_{st}
	[1]	[s]	[°C]	[kg/s]	[°C]
1.					
2.					
3.					
4.					
5.					
6.					
7.					
8.					

	en vom Meßgefäß
0	Тур:
0	Teilung:
• Stoppu	hr
0	Typ:
• Voltme	eter
0	Typ:
0	Seriennummer:
0	$c_U = V/Teilung$
• Amper	emeter
0	Typ:
0	Seriennummer:
0	c_I = A/Teilung
• 8. Zusamm	
• 8. Zusamm	enfassung der Messung(in wenigen Sätzen)
• 8. Zusamm	enfassung der Messung(in wenigen Sätzen)
• 8. Zusamm	enfassung der Messung(in wenigen Sätzen)