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Chapter 1

Some basic relationships of fluid
mechanics and thermodynamics

1.1 Continuity equation

In the absence of nuclear reactions, matter can neither be created or destroyed. This is the principle of mass
conservation and gives the continuity equation. Its general form is

∂ρ

∂t
+ div(ρv) = 0 (1.1)

where div(v) = ∇v = ∂vx/∂x+ ∂vy/∂y + ∂vz/∂z. If the flow is steady (∂ . . . /∂t = 0) , we have

div(ρv) = 0. (1.2)

Moreover, in many engineering applications the density can be considered to be constant, leading to

div(v) = 0. (1.3)

The above forms are so-called differential forms of the continuity equation. However, one can derive the
so-called integral forms. For example, for the steady-state case, if we integrate (1.3) on a closed surface A,
we obtain

∫
A

ρvdA =

∫
A

ρv⊥dA. (1.4)

Note that the surface is defined by its normal unit vector dA and one has to compute the scalar product
vdA. One can resolve the velocity to a component parallel to and another perpendicular to the surface as
v = v⊥ + v‖. Thus vdA = |v| |dA| cosα = v⊥dA.

In many engineering applications, there is an inflow A1 and an outflow A2, between which we have rigid walls,
e.g. pumps, compressors, pipes, etc. Let us denote the average perpendicular velocities and the densities at
the inlet A1 and outlet A2 by v1, ρ1 and v2, ρ2 respectively. Than, we have

ṁ = ρ1v1A1 = ρ2v2A2 = const. (1.5)

The quantity ṁ is called mass flow rate (kg/s) and it simply reflects to the fact that under steady-state
conditions the amount of mass entering the machine per unti time has to leave it, also. If the density is
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constant, we have
Q = ṁ/ρ = v1A1 = v2A2 = const., (1.6)

where Q (m3/s) is the volumetric flow rate.

1.2 Bernoulli’s equation

In the case of steady frictionless flow, the energy of the fluid along a streamline remains constant. Mostly
we deal with incompressible fluids, for which the energy content per unit volume is

Energy per unit volume =
mgh+ 1

2mv
2 + pV

V
= p+

ρ

2
v2 + ρgh = constant. (1.7)

Considering two points of the streamline (the flow is from 1 to 2), we have

p1 +
ρ

2
v2

1 + ρgh1 = p2 +
ρ

2
v2

2 + ρgh2. (1.8)

Note that the above form can only applied if

� the flow is incompressible, i.e. ρ = const,

� the flow is ideal, i.e. there are no losses (friction, separation, etc.),

� points 1 and 2 refer to two points on the same streamline and

� the fluid is Newtonian, i.e. the stress versus strain rate curve is linear and passes through the origin.
The constant of proportionality is known as the viscosity: τ = µγ̇. (In common terms, this means the
fluid continues to flow, regardless of the forces acting on it. For example, water is Newtonian, because
it continues to exemplify fluid properties no matter how fast it is stirred or mixed.)

The Bernoulli equation can be extended to include friction and unsteady effects:

p1 +
ρ

2
v2

1 + ρgh1 = p2 +
ρ

2
v2

2 + ρgh2 +
∑

ζi
ρ

2
v2
i︸ ︷︷ ︸

friction

+ ρL
dv

dt︸ ︷︷ ︸
unsteady term

. (1.9)

1.3 Energy equation for compressible flow

Without derivation, we simply state that the energy equation for frictionless, stationary flow of a compressible
ideal gas without heat transfer takes the following form

ht =
v2

2
+ cpT = constant, (1.10)

where cp [J/kgK] is the specific heat capacity taken at constant pressure and T [K] is the absolute (!) tem-
perature. The quantity h is called enthalpy, ht stands for total enthalpy, while the term cpT is referred to as
h thermodynamic enthalpy.
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1.4 Thermodynamics

1.4.1 Specific heat capacities

Assume that a definite mass of gas m is heated from T1 to T2 at constant volume and thus its internal energy
is raised from U1 to U2. We have

mcV ∆T = ∆U or cV ∆T = ∆u, (1.11)

where u is the internal energy per unit mass and cV (J/(kgK)) is the specific heat capacity measured at
constant volume.

Now we do the same experiment but now at constant pressure, thus its volume changes and work is done on
the fluid:

mcp ∆T = ∆U +mp∆V, (1.12)

which, after rewriting for unit mass and combining with the previous equation for constant volume process,
also using the ideal gas model RdT = pdV gives

cp ∆T = ∆u+ p∆V = cV ∆T +R∆T → cp = R+ cV . (1.13)

Thus we see that it is useful to define a new quantity which includes both the change of the internal energy
u and the pressure work p dv = p d (1/ρ). Some useful equations:

R = cp − cV , κ =
cp
cV
, cp = R

κ

κ− 1
and cV = R

1

κ− 1
. (1.14)

1.4.2 Some basic thermodynamic relationships

One possible form of the energy equation for a steady, open system in differential form is

δY + δq = d

(
h+

c2

2
+ gz

)
︸ ︷︷ ︸

e

, (1.15)

δY is the elementary shaft work, δq is the elementary heat transferred towards the fluid, both of them being
processes, which is emphasised by the δ symbol. And

e = h+
c2

2
+ gz

is the energy. Note that the above equation describes an elementary process, however, to compute the overall
process (to integrate the above equation), one has to know what kind of process takes place in the machine
(adiabatic, isentropic, isotherm, etc.) and the results depends on it (thus, the integral is inexact).

The term enthalpy is often used in thermodynamics. It expresses the sum of the internal energy u and the
ability to do hydrodynamic work p

h = u+
p

ρ
. (1.16)

Note that h = cpT and u = cV T . There are some forms of expressing the change in enthalpy (v = 1/ρ):

dh = d(u+ pv) = δq + vdp = Tds+ vdp. (1.17)
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The entropy1 is for an elementary change in the equilibrium is

ds =
δq

T
+ dsirrev, (1.18)

with which, using (1.17) we obtain

dh = δq + Tdsirrev + vdp, (1.19)

with which (1.15) turns into

δY = vdp+ d

(
c2

2
+ gz

)
︸ ︷︷ ︸

δYu(seful)

+Tdsirrev.︸ ︷︷ ︸
losses

(1.20)

1.4.3 Input shaft work and useful work

The input shaft power is simply the work needed to change the enthalpy of the fluid:

Pin = ṁ∆e = ṁ

(
h2 − h1 +

c22 − c21
2

+ g(z2 − z1)

)∣∣∣∣
z1≈z2,c1≈c2

= ṁcp (T2 − T1) (1.21)

When computing the useful work, we integrate the Yu part of (1.20) between points 1 and 2 (e.g. between
the suction and pressure side of a compressor). We still assume that z1 ≈ z2 and c1 ≈ c2.

Yu =

∫ 2

1

vdp =

∫ 2

1

1

ρ
dp (1.22)

In the case of an isentropic process, we have p/ρ = RT (ideal gas law) and p/ρκ = const. (κ is the isentropic
exponent), thus

Yisentr. =

∫ 2

1

1

ρ
dp =

∫ 2

1

p
1/κ
1

ρ1
p−1/κdp =

p
1/κ
1

ρ

∫ 2

1

p−1/κdp =
κ

κ− 1

p1

ρ1

[(
p2

p1

)κ−1
κ

− 1

]
. (1.23)

Note that the above equation gives

Yisentr. =
κ

κ− 1

p1

ρ1︸︷︷︸
RT1


(
p2

p1

)κ−1
κ

︸ ︷︷ ︸
T2/T1

−1

 =
κ

κ− 1
R︸ ︷︷ ︸

cp

(T2 − T1) , (1.24)

which is exactly the input specific work defined by (1.21).

A typical compression system consists of a compressor and a pressure vessel, which stores the compressed
gas. Although the gas heats up during the compression but in the vessel it will cool back to the pressure of
the surroundings. In other words, we loose the heat energy and the ’useful’ process is isotherm. We have
p/ρ = RT (ideal gas law) and T =const., thus

Yisotherm =
p1

ρ1

∫ 2

1

1

p
dp = RT1 ln

(
p2

p1

)
(1.25)

1Entropy is the only quantity in the physical sciences that seems to imply a particular direction of progress, sometimes called
an arrow of time. As time progresses, the second law of thermodynamics states that the entropy of an isolated system never
decreases. Hence, from this perspective, entropy measurement is thought of as a kind of clock.
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The real processes are usually described by polytropic processes but formally we use the same equations
as in the isentropic case, with the slight change of using the polytropic exponent n instead of κ. We have
p/ρ = RT (ideal gas law) and p/ρn =const., thus∫ 2

1

1

ρ
dp

∣∣∣∣
polytropic

=
n

n− 1

p1

ρ1

[(
p2

p1

)n−1
n

− 1

]
=

n

n− 1
R (T2 − T1) . (1.26)

Polytropic processes are real, non-adiabatic processes. Note that the polytropic exponent n is typically a
result of curve fit that allows the accurate computation of the outlet temperature.

Finally, if the fluid is incompressible, we have

Yincomp. =
1

ρ

∫ 2

1

1 dp =
p2 − p1

ρ
. (1.27)

In conclusion we have discussed four different case:

Isentropic: Y = κ
κ−1

p1
ρ1

[(
p2
p1

)κ−1
κ − 1

]
= κ

κ−1R (T2 − T1) ,

Isotherm: Y = RT1 ln
(
p2
p1

)
,

Polytropic: Y = n
n−1

p1
ρ1

[(
p2
p1

)n−1
n − 1

]
= n

n−1R (T2 − T1) ,

Incompressible: Yu = p2−p1
ρ .

1.4.4 Specific work for hydraulic machines

In the case of pumps, the fluid can be considered as incompressible. However, instead of Y usually the head
is used:

H =
Yu
g

=
p2 − p1

ρg
+
c22 − c21

2g
+ z2 − z1. [m] =

[
J

N

]
(1.28)

In the case of ventilators, the energy change due to the geodetic heigth difference between the suction and
pressure side is neglegible (z2 ≈ z1) and usually the change of total pressure is used:

∆pt = Yuρ = p2 − p1 + ρ
c22 − c21

2
= pt,2 − pt,1. [Pa] =

[
J

m3

]
(1.29)

In the case of compressors, the fluid cannot be considered as incompressible. When neglecting the losses,
the specific work is:

Yu,isentropic = cp (T2s − T1) +
c22 − c21

2
= h2s,t − h1,t. (1.30)
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1.4.5 Efficiency

The ratio of the useful power and the input power is efficiency. For a given T2 compression final temperature,
we have

ηisentropic =
T2s − T1

T2 − T1
, (1.31)

for a polytropic process, we have

ηpolytropic =
n
n−1R(T2 − T1)

cp(T2 − T1)
=

n

n− 1

κ− 1

κ
. (1.32)

1.5 Problems

Problem 1.5.1

The turbomachines conveying air are classified usually as fans (p2/p1 < 1.3), blowers (1.3 < p2/p1 < 3) and
compressors (3 < p2/p1). Assuming p1 = 1 bar inlet pressure, t1 = 20o C inlet temperature and isentropic
process (κ = 1.4), find the the relative density change (ρ2−ρ1)/ρ1 at the fan-blower border and the t2 outlet
temperature at the blower-compressor border. (Solution: (ρ2 − ρ1)/ρ1 = 20.6%, t2 = 128.1o C)

Problem 1.5.2

Assuming isentropic process of an ideal gas, find the inlet cross section area and the isotherm useful power
of a compressor conveying ṁ = 3 kg/s mass flow rate. The velocity in the inlet section is c = 180 m/s. The
surrounding air is at rest with p0 = 1 bar and T0 = 290 K. cp = 1000J/kgK, κ = 1.4. The pressure at the
outlet is equal to p2 = 4 bar. (Solution: A1 = 0.016 m2)

Problem 1.5.3

Gas is compressed from 1 bar absolute pressure to 4 bar relative pressure. The gas constant is 288J/kgK, the
specific heat at constant pressure is cp = 1005 J/kgK. The exponent describing the polytropic compression is
n = 1.54. Find the isentropic exponent. Find the isentropic specific useful work, the specific input work and
the isentropic efficiency. The density of atmospheric air is 1.16 kg/m3. ht ≈ h is a reasonable approximation.
(Solution: κ = 1.402, Yisentropic = 176.28 kJ/kg, Yinput = 228.12 kJ/kg, ηisentropic = 77.28%.)
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Problem 1.5.4
Air is compressed from 1 bar absolute pressure to 3 bar relative pressure. The ideal gas constant
is 287 J/kgK. Calculate the temperature at the end of the compression, if the process is adiabatic,
and the value of the heat capacity ratio is: κ = 1.4. The air temperature at the inlet is t1 = 10oC.
Calculate the input shaft work, if the losses are Y’ = 70 kJ/kg. Find the isentropic useful work and
the isentropic efficiency! The htot ≈ h approximation is reasonable because the change of the kinetic
energy is negligible.

Solution:

p2 = 4bar absolute pressure. At the end of the isentropic compression the temperature of the gas

is: T2s

T1
=
(
p2
p1

)κ−1
κ

=
(

4
1

) 1.4−1
1.4 = 1,486 from which we get: T2s = 1.468T1 = 420K. However, if we

consider the losses, the temperature of the fluid will increase further. The heat capacity at constant
pressure:

cp =
κR

κ− 1
=

κR

κ− 1
=

1.4× 287

1.4− 1
= 1005J/kgK.

Yu,isentropic = cp(T2s − T1) = 1005× (420− 283) = 137.6kJ/kg.

Next, we add the losses:

Yin = Yu,isentropic + Y ′ = 137.6 + 70 = 207.6kJ/kg.

The isentropic efficiency is: ηisentropic = 137.6
207.6 = 0.66. The temperature at the end of the compression:

T2 = T1 +
Yin
cp

= 283 +
207.6

1.005
= 489K = 216oC.

Problem 1.5.5

Ideal gas (gas constant R = 288 J/kgK, specific heat at constant pressure is cp = 1005 J/kgK) with 27oC
and 1 bar pressure is compressed to 3 bar with compressor. The exponent describing the real state of change
is n = 1.5. Find the absolute temperature and density of the air at the outlet. Find the isentropic outlet
temperature, the isentropic efficiency and the isentropic useful specific work. Find the power needed to cover
the losses, if the mass flow is 3 kg/s. (Solution: Treal = 432.7K, ρ = 2.407 kg/m3, Tisentropic = 410.6K,
ηisentropic = 83.3%, Yisentropic = 111.48 kJ/kg, Ploss = 66.8kW)

Problem 1.5.6

Gas is compressed from 1 bar to 5 bar. The ambient air temperature at the inlet t1 = 22◦C while at the
outlet t2 = 231◦C. Gas constant R = 288 J/kgK. Find the exponent describing the politropic compression
and the density of air at the inlet and the outlet. (Solution: n = 1.5, ρ1 = 1.177kg/m3, ρ2 = 3.44kg/m3.)

Problem 1.5.7

Along a natural gas pipeline compressor stations are installed L = 75 km distance far from each other. On
the pressure side of the compressor the pressure is pp = 80 bar, the density is ρp = 85 kg/m3, while the
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velocity of the gas is vp = 6.4 m/s. The diameter of the pipe is D = 600 mm the friction loss coefficient is
λ = 0.018. Assuming that the process along the pipeline is isotherm, the pressure loss is calculated

as
p2beg−p

2
end

2 = pbegλ
L
D
ρbeg

2 v2
beg.

� Find the pressure, the density, and the velocity at the end of pipeline.

� Find the mass flow through the pipeline.

� Find the needed compressor power assuming that the compression is a politropic process and n = 1.45.

� Find the ratio of the compressor power and the power that could be released by the complete combustion
of the transported natural gas. The heating value of the natural gas is H = 43 MJ/kg. (Hint:
Pcomb = ṁH)

Problem 1.5.8
A compressor carries air from a large open space to a tank (Figure 1.1). The properties of the ambient
fluid are the following: T = 27◦C, R = 286 J/kgK, κ = 1.4. The pressure after the compressor is
4 bar, and the volumetric flow rate just before the compressor is Q = 2.5 m/s. The politropic gas
constant, which describes the compression is n = 1.54. The diameter of the pipe at the suction
side and the pressure side is 125 mm. Check if the Mach number at the suction side is lower than
0.7! (Solution: Ma1 = 0.609, Yin = 200 kJ/kg, Pin = 487 kW, Yu = 158.2 kJ/kg, p3 = 2.42 bar,
T2,s = 445.9 K, Yisentropic = 167.4 kJ/kg, Yisotherm = 131 kJ/kg.

Solution:

Check if the Mach number at the suction side is lower than 0.7!
0–1 analysis of the isentropic process (the losses are neglected):

p0 = 1bar, T0 = 300K,R = 286J/kgK, κ = 1.4, Q1 = 2.5m3/s, d1 = d2 = 125mm

Cross section of the inlet: A1 = d1
2π/4 = 0.1252 × π/4 = 0.01227m2. Velocity at the inlet: c1 =

Q1/A1 = 2.5/0.01227 = 203.7m/s. Density of the ambient air: ρ0 = p0/RT0 = 105/286/300 =
1.166kg/m3 , cp = κR

κ−1 . The velocity of the air increases as an isentropic process as it enters the pipe
at the inlet:

h0 = htotal = const. = h1 + c1
2/2, therefore T1 = T0 − c12/(2cp) = 300− 203.72/2/1001 = 279.3K

The Mach-number at the local speed of sound is: Ma1 = c1√
κRT1

Ma1 =
c1√
κRT1

=
203.7√

1.4× 286× 279.3
= 0.609 < 0.7

(0.7 is a prescribed design parameter, which ensures that the Mach number is less than one.)
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Figure 1.1: Compression system of Problem 1.5.9.

Problem 1.5.9
Find the input shaft work, the shaft power and the polytropic useful work of the previous problem!
Calculate the pressure of the fluid in the tank after it cools down to the temperature of the ambient
fluid! Find the temperature assuming that the compression is an isentropic process! Neglecting the
kinetic energy, find the useful work in case of an isentropic and isotherm process (the pressure before
and after the compressor can be assumed to be the same as for the politropic process).

Solution:

Calculate the input shaft work, the shaft power, and the polytropic useful work! The critical energy
change of the air shall be considered.

1 – 2: the compression can be approximated as a polytropic process.

Pressure of the air at the inlet: p1 = p0

(
T1

T0

) κ
κ−1

= 100 ·
(

279.3
300

) 1.4
1.4−1 = 77.8kPa. Density of

the air at the inlet: ρ1 = p1
RT1

= 279.3 × 77800
286 × 279.3 = 0.974kg/m3. The mass flow rate is:

ṁ = A1ρ1c1 = 0.01227× 0.795× 203.7 = 2.436kg/s.
The temperature at the end of the compression is:

T2 = T1

(
p2

p1

)n−1
n

= 279.3

(
4

0.778

) 1.54−1
1.54

.

The density of the air at the outlet of the compressor is: ρ2 = p2
RT2

= 400000
286×495.5 = 2.82kg/m3. The

velocity of the air at the outlet of the compressor is: c2 = ṁ
A2ρ2

= 2.436
0.01227×2.82 = 70.4m/s.

The shaft work during the compression is:

Yin = cp(T2−T1)+
c2

2 − c12

2
+g(z2−z1) = 1001×(495.9−279.3)+

70.42 − 203.72

2
+0 = 199.9kJ/kg.

The power of the compressor is:P = ṁYin = 2.436× 199.9 = 487kW . The polytropic useful work is:

Ypol =
n

n− 1

p1

ρ1

[(
p2

p1

)n−1
n

]
=

1.54

1.54− 1
× 77800

0.974

[(
4

0.778

) 1.54−1
1.54

]
= 176.7kJ/kg.

As the air in the closed tank reaches its equilibrium state, is cools down to the ambient temperature.
Calculate the pressure in the tank after the air reaches the ambient temperature! The cooling of the
air in the tank (which is marked as number three in the figure) can be approximated as an isochoric
process (Gay-Lussac II. law, p/T = const.)

p3 = p2
T3

T2
= p2

T0

T2
= 400000× 300

495.7
= 2.42bar.

Calculate the useful work, if the compression process is assumed to be (i) isentropic or (ii) isothermal.
The pressure at the end of the compression should be the same as in the case of the polytropic process!
Useful works: p1− > p2 = 4bar Isentropic:

Yisentropic =
κ

κ− 1

p1

ρ1

[(
p2

p1

)κ−1
κ

]
=

1.4

1.4− 1
× 77800

0.974

[(
4

0.778

) 1.4−1
1.4

]
= 166.8kJ/kg.

Isothermal:

Yisothermal = RT1ln

(
p2

p1

)
= 286× 279.3× ln

(
4

0.778

)
= 130.8kJ/kg

(which is the actual useful work, considering that the air cools down in the tank). The shaft work is:
Yin = 199, 9kJ/kg = 200kJ/kg.
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Problem 1.5.10
Calculate the efficiency in the case of the different processes of the previous problem.

Solution:

From the value of the input/shaft work and the useful work, the efficiency can be calculated in the
case of the different processes.

ηisothermal =
Yisothermal

Yin
=

130.8

199.9
= 0.654

ηisentropic =
Yisentropic

Yin
=

166.8

199.9
= 0.834

ηpol =
Ypol
Yin

=
176.4

199.9
= 0.882

In the figure below (Figure 2.12), the h-s diagram of dry air is displayed. The red curves are the iso-
chore (v = 1/ρ = const.) curves, while the black curves are the isobar (p = const.). The compression
process is displayed by the blue 0–1–2–3 lines.

Figure 1.2: h-s diagram of dry air

Problem 1.5.11

At the pressure side of the compressor 2.5 bar absolute pressure and 187◦C temperature was measured, the
temperature of the inflow air is 27◦C, and the pressure at the suction side is 1020 hPa (1 hPa = 100 Pa). Find
the politropic exponent of the compression and the politropic efficiency of the process, if κ = 1.4! (Solution:
n = 1.911, ηpol = 0.6).



Chapter 2

Incompressible turbomachinery

We classify as turbomachines all those devices in which energy is transferred either to, or from, a continuously
flowing fluid by the dynamic action of one ore moving blase rows. Essentially, a rotating blade row, a rotor
or an impeller changes the stagnation enthalpy of the fluid moving through it. These enthalpy changes are
intimately linked with the pressure changes in the fluid.

Up to 20% relative density change, also gases are considered to be incompressible. Assuming isentropic
process and ideal gas, this corresponds to p2/p1 ≈ 1.3. Thus, pumps, fans, water and wind turbines are
essentially the same machines.

2.1 Euler’s turbine equation

Euler’s turbine equation (sometimes called Euler’s pump equation) plays a central role in turbomachinery
as it connects the specific work Y and the geometry and velocities in the impeller. In what follows, we give
two derivations of the equation.

Figure 2.1: Generalized turbomachine

Derivation 1: Moment of momentum

Let us compute the moment of the force that is applied at the inlet and outlet of the generalized turbomachine

15
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shown in figure 2.1:

F =
d

dt
(mc) → M =

d

dt
(r ×mc) = ṁ (r × c) (2.1)

where m is the mass flow, and c is the velocity of the fluid on the radius r. We consider the following
assumptions:

� The inlet of the turbomachine is a circle with radius r1, and the outlet with radius r2.

� c velocity is considered constant in the sense that its length and angle are constant.

Thus
M = Mout −M in = ṁ (r2 × c2)− ṁ (r1 × c1)

. With this the power need of driving the machine is

ṁY = P = ωM = (Mout −M in) ω = ṁ [ω (r2 × c2)− ω (r1 × c1)]

= ṁ [c2 (ω × r2)− c1 (ω × r1)] = ṁ [c2u2 − c1u1]

= ṁ [|c2||u2| − |c1||u1|] = ṁ (c2uu2 − c1uu1) (2.2)

where ui = |ui|, and ci = |c2u|cos(α). Comparing the beginning and the end of the equation, we see that
the specific work is

Y = c2uu2 − c1uu1 . (2.3)

Derivation 2: Rotating frame and reference and rothalpy

The Bernoulli equation in a rotating frame of reference reads

p

ρ
+
w2

2
+ U = const., (2.4)

where U is the potential associated with the conservative force field, which is the potential of a rotating
frame for reference: U = −r2ω2/2. Let w stand for the relative velocity, c for the absolute velocity and
u = rω for the ’transport’ velocity. We have c = u + w, thus w2 = u2 + c2 − 2u c = u2 + c2 − 2u cu, which
gives

p

ρ
+
w2

2
− r2ω2

2
=
p

ρ
+
c2 + u2 − 2cu

2
− u2

2
=
p

ρ
+
c2

2
− c u︸︷︷︸

cuu

= const. (2.5)

Thus we see that the above quantity is conserved in a rotating frame of reference, which we refer to as
rothalpy (abbreviation of rotational enthalpy). Let us find now the change of energy inside the machine:

Y = ∆

(
p

ρ
+
c2

2

)
= ∆ (cuu) , (2.6)

which is exactly Euler’s turbine equation. (For compressible fluids, rothalpy is I = cpT + c2

2 − ucu.)

2.2 Velocity triangles and performance curves

From the Euler turbine equation we have:

∆pe = ρgH = ρ (c2uu2 − c1uu1)

where H is the head of the pump. Known the velocity triangle’s components and the density of the fluid,
we get:

H =
c2uu2 − c1uu1

g
(2.7)



Fluid Machinery 17

The volume flow rate is
Q = c2mA2 = c2mD2πb2, (2.8)

where D2 is the impeller outer diameter, b2 is its flow-through width at the outlet. From 2.7 and 2.8 we
have that c outlet absolute velocity is the connection between the head and the flow rate of the pump. Also
one can notice, that if ∆pe increased, that is when c2u is increased than Q decreases (c2m decreases). And
if ∆pe decreased (c2u decreased) than Q increases (c2m increases). So our goal now is to find a relationship
between the head and the flow rate of the pump.

2.2.1 Radial (centrifugal) machines

Let us consider a centrifugal pump and the velocity triangles at the impeller inlet and outlet, see Fig. 2.2.
The theoretical volume flow rate is

Qth = c2mA2Ψ = c2mD2πb2Ψ, (2.9)

where D2 is the impeller outer diameter, b2 is its flow-through width at the outlet and c2m is the radial
component of the outlet absolute velocity. Ψ < 1 is a constant called blockage factor that takes into account
that the real flow through area is smaller due to the blockage of the blade width at the outlet.

Figure 2.2: Centrifugal pumps

The velocity triangle describes the relationship between the absolute velocity c, the circumferential velocity
u and the relative velocity w. Obviously, we have ~c = ~u+ ~w. Moreover, we know that (a) the circumferential
velocity is u = Dπn and that (b) the relative velocity is tangent to the blade, i.e. the angle between u and
w is approximately the blade angle β.

Basic trigonometrical identities show that c2u = u2 − c2m/ tanβ2. It is usual to assume that the flow has
no swirling (circumferential) component at the inlet (due to Helmholtz’s third theorem). In the reality, the
outlet flow angle is not exactly β2, thus the head is decreased, which is taken into account with the help of
the slip factor λ (sometimes denoted by σ in the literature).
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Figure 2.3: Centrifugal impeller with outlet velocity components.

If there is no prerotation (i.e. c1u = 0), we have

Hth = λ
c2uu2

g
= λ

(
u2

2

g
− u2

g

w2u

g

)
= λ

(
u2

2

g
− u2

g

c2m
tanβ2

)
= λ

(
u2

2

g
− u2

g tanβ2D2πb2Ψ
Qth

)
. (2.10)

Thus, the theoretical performance curve Hth(Qth) of a centrifugal machine is a straight line, which is (see
Figure 2.4)

� decreasing as Q is increased, for backward curved blades, i.e. β2 < 90o,

� horizontal, for radial blades (β2 = 90o) and

� increasing (as Q is increased) for forward curved blades, i.e. β2 > 90o.

2.2.2 Problems

Problem 2.2.12

A radial impeller runs at n=1440/min revolution speed and conveys Q = 40 l/s of water. The diameter of
the impeller is D = 240 mm, the outlet width is b2 = 20 mm. The blade angle at the outlet is β2 = 25
degrees. The inlet is prerotation-free. Find the theoretical head and draw a qualitatively proper sketch of
the velocity triangle at the outlet. (Solution: Hth = 22.9m)

Problem 2.2.13

The mean meridian velocity component of a radial impeller with D2 = 400 mm diameter at n = 1440rpm
revolution speed is cm = 2.5 m/s. The angle between the relative and circumferential velocity components
is β2 = 25 degrees. With a geometrical change of the blade shape, this angle is increased to to 28 degrees,
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Figure 2.4: Effect of blade shapes β2 angle on the performance curve.

that results in 10% drop of the meridian velocity component. The inlet is prerotation-free. Find the relative
head change. (Solution: (H25o −H28o)/H25o = 4.6%)

2.2.3 Axial machines

In the case of axial machines the flow leaves the impeller axially, see Fig. 2.5. The flow-through area is(
D2
o −D2

i

)
π/4, where Do and Di stand for the outer and inner diameter of the lade, respectively. Notice

that in this case, u1 = u2 because it is assumed that the flow moves along a constant radius. Assuming
(again) prerotation-free inlet (c1u = 0), we have c2m = c1 (due to continuity).

Figure 2.5: Axial pump (left) and axial fan (right)

However, an important difference between axial and centrifugal pumps (fans) is that in the case of axial
machines, the pressure rise changes along the radial coordinate of the blade:

∆pt(r) = ρu(r) (c2u(r)− c1u(r))|c1u=0 = ρ (2rπn)

(
2rπn− c2m

tanβ2

)
. (2.11)

Thus, if we wanted to obtain constant ∆pt along the radial coordinate, the change of the circumferential
velocity has to be compensated by varying β2.
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Figure 2.6: Axial impeller with outlet velocity components.

2.2.4 Problems

Problem 2.2.14
The outer diameter of a CPU axial cooler ventilator isDo = 47 mm the inner diameter isDi = 21.5 mm
the revolution speed is n = 2740 rpm. Due to the careful design the hydraulic efficiency is ηh = 85%
however the volumetric efficiency as consequence of leakage flow rate between the housing and the
impeller is just ηvol = 75%. The blade angle at the suction side is β1 = 20◦ while at the pressure side
β2 = 40◦. Find the flow rate and the total pressure rise on the impeller. The density of the air is
ρ = 1.25 kg/m3. Draw the velocity triangles at the inlet and the outlet at the mean diameter.

� Aring =
(D2

o−D
2
i )π

4 = 0.00137 m2

� Dmean = Do+Di
2 = 0.03425 m

� umean = u1 = u2 = Dmeanπn = 4.913 m
s

� cax = c1,ax = c2,ax = u tanβ1 = 1.788 m
s

� q = ηvolAringcax = 0.00184 m3

s

� w2u = cax
tan β2

= 2.131 m
s

� ∆cu = u− w2u = 2.782 m
s

� ∆ptotal,ideal = ρu∆cu = 17.1 Pa

� ∆ptotal = ηh∆ptotal,ideal = 14.5 Pa
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Problem 2.2.15
The inner diameter of an axial impeller is Di = 250 mm, while the outer one is Do = 400mm. The
revolution number of the impeller is 1470rpm. The inlet is prerotation-free. At Q = 0.36 m3/s the
hydraulic efficiency is 85%, the head is 6 m. The specific work along the radius is constant. Find the
angles β1,2 at the inner and outer diameter.

Solution:

� The velocity triangles are depicted in the Figure 2.7.

� The circumferential speed at the inner diameter is u2i = Diπn = 0.25π 1470
60 = 19.24m/s. The

two circumferential speeds ui,1 and ui,2 equal as they are located at the same (inner) radius.

� The circumferential speed at the outer diameter is u20 = Doπn = 0.4π 1470
60 = 30.79m/s. Again

the the two circumferential speeds uo,1 and uo,2 equal as they are located at the same (outer)
radius.

� The theoretical head is Hth = c2uu2

g = H
ηh

= 7.059m. We also have c2uu2 = Hthg = 69.247

m2/s2, which is constant along the radius: c2u,i = 69.247
19.24 = 3.56 m/s and c2u,o = 69.247

30.79 = 2.25
m/s.

� The axial component of the velocity is cax = 4Q
(Do2−Di2)π

= 4×0.36
(0.42−0.252)π = 4.70 m/s

� The blade angles are

β1i = arctan
cax
u2i

= 13.73o and β2i = arctan
cax

u2a − c2ui
= 16.7o.

� With the same train of thought, one obtains β10 = 8.7o and β20 = 9.4o.

Figure 2.7: Velocity triangles
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2.2.5 Real performance curves

Our analysis so far assumed that the flow inside the impeller is ideal (no losses) and that the streamlines
are following the blade shape (thus, blade angles are also the streamline angles). However neither of these
assumptions are true.

There are significant friction losses inside the impeller, the narrower the flow passage is, the higher the
friction losses will be. Moreover, the volute also introduces friction losses. These losses are proportional to
the velocity squared, thus H ′friction ∝ Q2.

On the other hand, if the angle of attack deviates from the ideal one, one experiences separation on the two
sides of the blade. This is illustrated in Figure 2.8 for a constant circumferential velocity u as the flow rate
and thus the inlet velocity c is varied, the relative velocity w also varies. At the design flow rate Qd the
angle of attack ideal. For small flow rates, we have separation on the suction side of the blade, while for
larger flow rates the separation is on the pressure side of the blade. Thus we have H ′separation ∝ (Q−Qd)2.

To obtain the real performance curve, one has to subtract the above two losses from the theoretical head:
H = Hth(Q)−K1Q

2 −K2(Q−Qd)2, which is illustrated in 2.8. Note that at the design point and close to
it, the friction losses are moderate and no separation occurs. For lower flow rates, the friction loss decreases
while separation increases. For higher flow rates, both friction and separation losses increase.

Figure 2.8: Friction and separation losses in the impeller.
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2.3 Losses and efficiencies

Let us analyse the losses that decrease the efficiency of a turbomachine (see Figure 2.9).

Figure 2.9: Losses of the pump.

Let the input mechanical power transmitted by the shaft be denoted by Pinput. We have than

Mechanical losses P ′m These represent the friction loss in the bearings and the mechanical sealing losses
(if any). The remaining power is called internal power Pi = Pinput − P ′m.

Disc friction losses P ′df A significant shear force appears in the fluid entrapped between the housing and
the impeller, which is taken into account by the disc friction coefficient : P ′df = νdfPi. The remaining
power is the theoretical power of the impeller: Pth = Pi − P ′df = (1− νdf )Pi.

Hydraulic and volumetric losses P ′h, P
′
v The theoretical head Hth and flow rate Qth and is further

decreased by the leakage flow rates (Ql(eakage)) inside the pump (flow across the gaps between the
impeller and the housing) and the internal frictional losses h′ (e.g. in the impeller and volute). We
have

Pth = QthρgHth = (Q+Ql) ρg (H + h′) = QρgH︸ ︷︷ ︸
Pu

+QlρgH︸ ︷︷ ︸
P ′v

+Qthρgh
′︸ ︷︷ ︸

P ′h

= QρgH
Q+Ql
Q

H + h′

H
= QρgH

Qth
Q︸︷︷︸
η−1
v

Hth

H︸︷︷︸
η−1
h

→ Pu = Pthηhηv (2.12)
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2.3.1 Problems

Problem 2.3.16
The revolution number of a water pump is 1470 rpm, the flow rate is Q = 0.055m3/s and the head is
H = 45m. The hydraulic power loss is P ′h = 2.5kW, the mechanical power loss is P ′m = 1.3kW, the
disc friction coefficient is νt = 0.065. The input power at this operating point is Pin = 32kW. Make
a complete analysis of the losses, including leakage flow rate and the theoretical head.
Solution:
The power flow chart is in Figure 2.10

� Pi = Pinput − P ′m = 30.7 kW → ηm = 95.9%

� Pth = (1− ν)Pi = 28.7 kW

� h′h =
P ′h
ρgQ = 4.63 m → Hth = 45 + 4.63 = 49.63 m → ηhydr = 90.6%

� Qth = Pth
ρgHth

= 0.0589 m3/s → Qleakage = 0.00395 m3/s → ηv = 93.2%

� ηoverall = ηv · ηh · (1− ν) · ηm = 75.9%

Figure 2.10: Power flow chart
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Problem 2.3.17

Calculate the theoretical head, the theoretical volume flow rate, the hydraulic efficiency and the volumetric
efficiency based on the data of the water pump. Pinput = 43.5 kW, Q = 1100 dm3/min, H = 180m,
P ′mech = 1.6 kW, νdf = 0.03, h′ = 32m. (Solution: Hth = 212m, Qth = 0.01954m3/s ηhydr = 84.9%
ηvol = 93.8%)
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2.4 Dimensionless numbers and affinity

Based on the previously obtained formulae for theoretical head, we define dimensionless numbers as

H = ηhHth = 2ηh
c2u
u2

u2
2

2g
:= ψ

u2
2

2g
(2.13)

or, in the case of fans

∆pt = ψ
ρ

2
u2

2, (2.14)

where ψ is a dimensionless pressure rise. Similarly, we have

Q = ηvQth = ηvD2πb2c2m = ηv
4D2πb2

4D2
2

c2m
u2

u2D
2
2 := ϕ

D2
2π

4
u2 (2.15)

These dimensionless quantities are called pressure number ψ and flow number ϕ. What we found is that
H ∝ n2 and Q ∝ n allowing the transformation of the performance curve given at n1 to be computed to
another revolution number n2. This is called affinity law :

H1

H2
=

(
n1

n2

)2

,
Q1

Q2
=
n1

n2
→ P1

P2
=

(
n1

n2

)3

(2.16)

As we have seen, both ψ and ϕ contains two parameters, D2 and u2, out of which one can be eliminated,
resulting in new dimensionless numbers. Let us start with the elimination of D2.

ϕ =
Q

D2
2π
4 u2

=
4Q

D3
2π

2n
(2.17)

ψ =
H
u2
2

2g

=
2gH

D2
2π

2n2
(2.18)

from which we have

σ =
ϕ1/2

ψ3/4
=

2
√
Q

D
3/2
2 π
√
n

D
3/2
2 π3/2n3/2

(2gH)
3/4

=

√
π

4
√

2g3/4
n
Q1/2

H3/4︸ ︷︷ ︸
nq

(2.19)

Note that σ depends only on the revolution number but takes different values along the performance curve.
Thus when actually computing it, one takes the data of the best-efficiency point. Moreover, we do not

include the constant term
√
π

4√2g3/4
. Finally, by definition, the specific speed of a turbomachine is

nq = n[rpm]

(
Qopt.[m

3/s]
)1/2

(Hopt.[m])
3/4

(2.20)

Specific speed defines the shape of the impeller, low specific speed means low flow rate and high pressure
rise (radial impeller) while high specific speed occurs when the flow rate is high and the pressure rise is low,
see Fig. 6.4.

Based on experience the available maximum efficiency can be estimated in the knowledge of Qopt and nq as
follows

ηmax = 0.94− 0.048Q−0.32
opt − 0.29

(
log
(nq

44

))2

. (2.21)

Representing δopt(σopt), turbomachines having good efficiency pass a narrow path. This diagram is called
Cordier-diagram. The centre of the path can be assumed with
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Figure 2.11: Specific speed and shape of the impeller.

δ =

(
2.1

1.41 log(σ)

)1.34

. (2.22)

Experience moreover shows that for a given nq estimation can be given for the ideal value of ψ as follows

ψ =

(
300

270 + nq

)9/4

. (2.23)

2.4.1 Problems

Problem 2.4.18

The input mechanical power of a water pump is 25 kW, the revolution number is 1440 rpm, the flow rate
is 0.06 m3/s. The volumetric efficiency is estimated as ηv = 0.92, the hydraulic efficiency is ηh = 0.85, the
disc friction power loss is P ′df = 0.9 kW, the mechanical loss is P ′m = 1.3 kW. Find the head and the specific
speed and make a sketch of the impeller. (Solution: H=30.3m, nq=27.3, the impeller is a thin radial one.)

Problem 2.4.19

The revolution number of a pump is 1450 rpm, the head and flow rate at the best-efficiency point are 17m
and 0.03 m3/s. Find the specific speed. Find the diameter of the impeller if, based on industrial experience,
the pressure number at the best-efficiency point should be ψ = 1. Find the flow number ϕ. Find the head and
flow rate at 970rpm. (Solution: nq = 30, D2 = 240mm, ϕ = 0.036, Q970rpm = 0.02m3/s, H970rpm = 7.61m)

Problem 2.4.20

The head produced by a six stage pump type CR 8-60 is H[m] = 68 − 0.2Q2, the speed of rotation is
n = 2850 1

min . The efficiency is η = 0.66 − 0.00731(Q − 9.5)2. The unit of the flow rate in the formulae is
[m3/h]. Find the specific speed. Based on the specific speed, find the type of the impeller. Determine the
input power of the water delivering pump for zero delivery Q = 0 by extrapolation from calculated points in
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the range Q = 1.5; 1; 0.5m3/h, and using L’Hopital’s rule. (Solution: nq = 29.9, hence the impeller is radial;
Pin = 1334W .)
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Problem 2.4.21
The characteristic curve of a pump at n1 = 1450/min rotor speed is H1 = 40m − 40000s2/m5Q2.
Calculate 5 points of the pump-characteristic for the rotor speed n2 = 2900/min in the flow rate
range Q2 = 0, 01m3/s − 0, 05m3/s at 0, 01m3/s intervals. According to laboratory tests the affinity
law is valid in this range. Give the equation of the characteristics H2(Q2) for the rotor speed n2!
(Solution: H2(Q2) = 160− 40000Q2

2)

Solution:

Affinity laws:

q2

q1
=
n2

n1
= 2,

H2

H1
=

(
n2

n1

)2

= 22 = 4 and
P2

P1
=
(n2

n1

)3

= 23 = 8.

2.with affinity q1 = q2/2[m3/s] 0 0.005 0.01 0.015 0.02 0.025
3.with the caracteristic curve H1[m] 40 39 36 31 24 15

1.given q2 [m3/s] 0 0.01 0.02 0.03 0.04 0.05
4.with affinity H2 = 4H1 160 156 144 124 96 60

Conversion of the characteristic curve analytically
the general shape of the characteristic curve of a pump at n1 speed: H1 = A + Bq + Cq2 (n this
case we assumed that the characteristic curve H(q) of a pump can be described with a second degree
polynomial. In reality this is a good approximation). In the present problem, the linear term (Bq) is
zero.

H1 = A+Bq + C2q = A+ C2q.

We have:

H2 = H1

(
n2

n1

)2

=

(
n2

n1

)2 (
A+ Cq1

2
)

= 1

(
n2

n1

)2
[
A+ Cq2

2

(
n1

n2

)2
]

= A

(
n2

n1

)2

+ Cq2
2.

In the first step of the above derivation, the affinity for the transport height H is used, in the second
the characteristic curve H1 is substituted. In the third we also use the affinity for the volume flows
rate q, and in the fourth we remove the parantheses from the equation. The caracteristic curve of
the pump is:

H2 = A

(
n2

n1

)2

+ Cq2 = 40×
(

2920

1460

)2

− 40000q2.

If the linear term B is non-zero, we have

H2 = A

(
n2

n1

)2

+B

(
n2

n1

)
q2 + Cq2

2.

The specific speed is

nq = n2q2,opt
1/2H2,opt

−3/4 = 2920×
√

0.03

1243/4
= 43.04.

Note that this number is independent of the actual revolution number (as long as the optimal head
and flow rate is properly used), which justifies its name. Finally, the characteristic curves are plotted
in Figure 2.12
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Figure 2.12: Convert characteristic curves to other speeds

Problem 2.4.22

Find the specific speed of the pump given by 2.13, if the revolution number is 3000 rpm. Make a sketch of
the impeller. (Solution: nq = 92, mixed impeller.)

Problem 2.4.23

The performance curve of a pump at 1450 rpm is given by H = 100 − 30000Q2 and the efficiency is given
by η = −78000Q2 + 4500Q. Find the head and flow rate of the best-efficiency point. Find the performance
curve at 1740 rpm. (Hopt = 76m, Qopt = 0.02855m3/s, ηmax = 64.9%, H1740rpm = 144− 30000Q2.)

Problem 2.4.24

Assuming prerotation-free flow at the inlet, find the pressure number-flow number of a radial pump with
backward swept impeller at the design (optimal) point! The pump has 9 impellers, so the slip factor is
approximately one (λ = 1). The blade angle at the outlet is β2 = 40◦ and the flow-through width of the
impeller is 9 % of the outer diameter (b2/D2 = 0.09). The outer diameter D2 = 200 mm, and the speed of
rotation is n = 1450 1

s . Calculate the specific speed (nq) of the machine! At the optimal (design) operation
point, the hydraulic efficiency is ηh = 86 %, the volumetric efficiency is ηv = 95 %, the flow number is
ϕ = 0.12, and the blockage ration is ψ2 = 1. (Solution: ψ = 1.00, Hopt = 11.74, Qopt = 0.0572, nq = 54.68)
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Figure 2.13: Performance chart for Problem 2.4.22.

Solution:

H = ηhλ
u2

2

g

(
u2 −

Q

ηvψ2D2πb2tgβ2

)
with λ = 1 and ψ2 = 1

ψ
u2

2

2g
= u2

2

2g ηh

(
1− φ

D2
2π
4 u2

ηvu2D2πb2tgβ2

)
→ (2.24)

ψ = 2ηh

(
1− 1

4ηv
b2
D2

tgβ2

φ

)
= 2 · 0.4 ·

(
1− 1

4·0.95·0.09·tg40oCφ
)

= 1.72 · (1− 3.485 · φ) (2.25)

ψopt = 1.72 · (1− 3.485 · φopt) = 1.72 · (1− 3.485 · 0.12) = 1,

in case of centrifugal pumps and centrifugal fans this is a common value.

u2 = D2πn = 0.2 · π · 1451

60
= 15.18m/s

Hopt = ψopt
u2

2

2g
= 1× 15.182

2 · 9.81
= 11.74m and Qopt = φopt

D2
2π

4
= 0.12 · 0.2

2π

4
15.18 = 0.0572m3/s

From whic we have

nq = n

√
Qopt

Hopt
3
4

= 1450 ·
√

0.0572

11.74
3
4

= 55
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2.5 Forces on the impeller

2.5.1 Axial force

The axial force results from two components:

� Momentum force

� Pressure distribution on the hub(back of the impeller) and shroud(front of the impeller).

The overall axial force is

Fax = Fhub − Fshroud + Fimpulse + mg,︸︷︷︸
in case of vertical impeller

(2.26)

and its direction is towards the suction side (the axial force tries to ’pull down’ the impeller from the shaft).
The impulse force is

Fimpulse = ṁv = ρQ︸︷︷︸
ṁ

Q

A1︸︷︷︸
cin

= ρ
Q2

A1
. (2.27)

The force on the hub and the shroud can be calculated from the pressure distribution along the impeller.

Figure 2.14: Pressure distribution on the hub.

In general for a rotating frame the pressure distribution is

p(r) = K +
ρ

2
(rωf )2, (2.28)

where K is a constant and ωf is the angular velocity of the fluid.

K can be calculated from the boundary condition. Since the pressure exactly known at the end of the
impeller (r = r2). For the hub this is

ph(r2) = p2 → ph(r) = p2 −
ρ

2
ω2
f

(
r2
2 − r2

)
. (2.29)
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In case of the shroud a pressure drop (∆p2) is reducing the pressure at the boundary:

ps(r2) = p2 −∆p2 → ps(r) = p2 −∆p2 −
ρ

2
ω2
f

(
r2
2 − r2

)
. (2.30)

The forces can be evaluated as the definite integral of the pressure distribution. The axial force becomes on
the hub (back of the impeller):

Fhub =

∫ r2

rs

2rπph(r)dr = 2π

∫ r2

rs

p2r −
ρ

2
ω2
f

(
r2
2r − r3

)
dr =

= 2π

[
p2
r2
2 − r2

s

2
− ρ

2
ω2
f

(
r2
2

r2
2 − r2

s

2
− r4

2 − r4
s

4

)]
=

= 2π
r2
2 − r2

s

4

[
p2 −

ρ

2
ω2
f

(
r2
2 −

r2
2 − r2

s

2

)]
, (2.31)

finally

Fhub =
(
r2
2 − r2

s

)
π

(
p2 −

ρ

2
ω2
f

r2
2 − r2

s

2

)
. (2.32)

A similar result is obtained for the shroud (front of the impeller) with replacing rs by r1:

Fshroud =
(
r2
2 − r2

1

)
π

(
p2 −∆p2 −

ρ

2
ω2
f

r2
2 − r2

1

2

)
. (2.33)

2.6 Problems

Problem 2.6.25

Find the axial force on the back of the impeller, whose outer diameter is D2 = 300mm, the shaft diameter
is Ds = 50mm, the outlet pressure is 2.3bar and the revolution number is 1470rpm. The average angular
velocity of the fluid is 85% of that of the impeller. (Solution: F = 9.36kN)

Problem 2.6.26

Calculate the axial force acting on the supporting disc of a pump impeller of 280mm diameter if the pressure
at the impeller exit is 2bar. The hub diameter is 40mm. There is no leakage flow through the gap between the
rotor supporting disc and the casing. The rotor speed is 1440/min. The angular velocity of the circulating
water is half of that of the rotor. Find the formula of pressure distribution as a function of the radial
coordinate! Draw the cross section of the impeller and the axial pressure force! (Solution: p(r)(Pa) =
1.443 · 105 + 2.842 · 106 · r2, Fax = 10418 N)

2.7 Cavitation

Two similar arrangement can be seen on left side of Figure 2.15. The only difference is the height of the pump,
although this cause major deviation in the pressure distribution along the pipe line as it can be observed
on the right side of the Figure. In the worst cases the pressure can be below the saturation vapour pressure
which means locally the vapour bubbles are appearing. This is called cavitation. The vapour pressure is
usually a function of the temperature, e.g. for water:

t[C] 10 20 40 60 80 100
pv[bar] 0.012 0.02 0.07 0.2 0.47 1
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Figure 2.15: Representation of the cavitation.

There could be three major consequences of the cavitation:

� Increased noise among vibration,

� Drastic decrease in hydraulic performance curve: H −Q,

� Damage of the impeller, see Figure 2.16.

Figure 2.16: Illustration of the cavitation damage in pumps.
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2.7.1 Net Positive Suction Head (NPSH)

To avoid cavitation it is not sufficient to ensure that the pressure at the suction side is larger than the vapour
pressure (ps > pv). Since inside the pump there is a complex flow, therefore it is possible to have p < ps
locally where the velocity is large enough. Ensuring the operational work without cavitation the NPSH has
to be defined. It is convenient to split the absolute pressure at the pressure side ps into two parts: pv vapour
pressure plus the part above that, deonted by ρg ×NPSH:

ps = pv + ρg × NPSH︸ ︷︷ ︸
Net Positive Suction Head

(2.34)

this way, the NPSH value gives the net ”standby” pressure above the vapour pressure that is available before
cavitation occurs.

pt

Hs

S

Figure 2.17: Representation of the NPSH.

There are two different NPSH values: available (NPSH a) and the required (NPSH r):

� The available NPSH a is a property of the hydraulic system (geometry, loss coefficients etc. of
the pipelines and tanks) and can be evaluated as

NPSH a =
pt − pv(T )

ρg
−Hs − h′(Q), (2.35)

where the h′(Q) represents the frictional losses at the suction-side pipeline (see later in Section 3.1).

� The required NPSH r value can be found in the catalogue of the pump. It is usually depending
on the volume flow rate similarly to the head.

The condition for avoiding the cavity is that the available NPSH must be larger than the required NPSH ,
mathematically:

NPSH a > NPSH r ⇐⇒ no cavitation (2.36)

2.7.2 Problems

Problem 2.7.27
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A pump delivers water from a low-pressure steam boiler as shown in the figure below. Calculate the required
geodetic height of the reservoir to avoid cavitation! The pipeline losses are to be taken into account.

� mass flow rate: ṁ = 27[kg/s], density of the hot wa-
ter: ρ = 983[kg/m3]

� pipe: L = 10[m], d = 100[mm], λ = 0.02 and the sum
of loss factors is ζ = 5

� pump: H[m] = 82 − 4800Q2, NPSH [m] = 1.6 +
1360Q2

Solution:
It’s easy to calculate that
Q = ṁ/ρ = 0.02747[m3/s]
cs = Q/A = 3.5[m/s]
H = 82− 4800× 0.027472 = 78.38[m]
NPSH = 1.6 + 1360× 0.027472 = 2.626[m]

Bernoulli’s equation between a surface point in the tank and the suction side of the pump reads:

pt
ρg

+
02

ρg
+Hs =

ps
ρg

+
c2s
ρg

+ 0 + h′pipeline

From the suction side of the pump to the impeller we have:

ps
ρg

+
c2s
2g

=
pvapour
ρg

+ es + NPSH

(Note that es = 0 as the configuration is horizontal.) Putting the above two equations together, we have

Hs = −pt − pvapour
ρg

+ h′pipe + NPSH , where h′pipe =
c2s
2g

(
λ

Hs + L

d
+ ζ

)
,

thus,

Hs =

(
1− c2s

2g

λ

d

)−1 [
NPSH +

c2s
2g

(
λL

d
+ ζ

)]
= · · · = 8.116[m]

Thoma’s cavitation coefficient is σ = NPSH /H = 0.03355[−].

Problem 2.7.28

Calculate the required pipe diameter to avoid cavitation, if the pump delivers Q = 30 dm3/s water from a
closed tank, where the pressure (above the water level) is p = 40 kPa. The equivalent pipe length on the
suction side is 5m, the friction coefficient is λ = 0.02, the suction flange of the pump is 3 m below the water
level. The vapour pressure at the water temperature is 2.8 kPa. The required net positive suction head is
NPSH r = 3.2 m. (The standard pipe diameter series is: DN 40, 50, 65, 80, 90)

Solution:

The sketch of the installation is shown in Figure 2.18

� NPSH a = pt−pv
ρg −Hs − h′s → h′s = pt−pv

ρg −Hs −NPSH r



Fluid Machinery 37

Figure 2.18: Installation of the apparatus.

� h′s = λ LeDs
c2s
2g = λ LeDs

8Q2

D4
sgπ

2

� Ds = 0.073m→ Ds = 80 mm

Problem 2.7.29

Find the required suction side height of the pump that conveys water from an open surface reservoir at
Q = 180m3/h flow rate the head is H = 30m the required net positive suction head NPSH r = 5.03m.
The temperature of the water is T = 23◦ the ambient pressure is p0 = 1023mbar. The hydraulic loss
of the suction side pipe can be calculated from h′s = 652[s2/m5]Q2 while the vapour pressure pv(kPA) =
1.704 + 0.107(t − 15) + 0.004(t − 15)2. Find the Thoma cavitation number. (Solution: Hs = 3.481m,
σ = 0.1677)



Chapter 3

Hydraulic Systems

3.1 Frictional head loss in pipes

In hydraulic machinery, instead of pressure p [Pa], usually the term head is used: H [m] = p
ρg . In real

moving fluids, energy is dissipated due to friction, as well as turbulence. Note that as the hydraulic power
is P = ρgHQ, but - because of the continuity equation - the flow rate is constant, the energy loss manifests
itself in head (pressure) loss. Head loss is divided into two main categories, ”major losses” associated with
energy loss per length of pipe, and ”minor losses” associated with bends, fittings, valves, etc. The most
common equation used to calculate major head losses is the Darcy Weisbach equation:

h′f = λ
L

D

v2

2g
= λ

L

D

8Q2

D4π2g
, (3.1)

where the friction coefficient λ (sometimes denoted by f) depends on the Reynolds number (Re = vD/ν,
ν [m2/s] = µ/ρ being the kinematic viscosity of the fluid) and the relative roughness e/D (e [m] being the
roughness projections and D the inner diameter of the pipe). Based on Nikuradse’s experiments, we have
different regimes based on the Reynolds number.

� For laminar flow Re < 2300, we have λ = 64.

� For transitional flow 2300 < Re < 4000, the value of λ is uncertain and falls into the range of 0.03 . . . 0.08
for commercial pipes.

� For turbulent flow in smooth pipes, we have 1√
λ

= 1.95 log(Re
√
λ)−0.55. However, this equation need

iteration for computing the actual value of λ. Instead, in the range of 4000 < Re < 105, the Blasius’s
formula is usually used: λ = 0.316/ 4

√
Re.

� For turbulent flow in rough pipes, Karman-Prandtl equation may be used: 1√
λ

= −2 log
(

e
3.7D

)
.

For Re > 4000, the Colebrook-White equation covers both the smooth and rough regime: 1√
λ

=

−2 log10

(
2.51

Re
√
λ

+ e
3.7D

)
Figure 3.1 depicts the Moody diagram, i.e. friction coefficient vs. Reynolds number for different pipe
roughness values.

The loss due to bends, fittings, filters, valves, etc. the minor losses can be taken into account with the help
of the loss factor ζ in the form of

h′ = ζ
ρ

2
v2. (3.2)

38
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Figure 3.1: Moody diagram: loss factor λ is a straigth pipe.

In design, minor losses (ζ) are usually estimated from tables using coefficients or a simpler and less accurate
reduction of minor losses to equivalent length of pipe (giving the length of a straight pipe with the same
head loss), see Table 3.2 for some examples.

Another way of characterizing the loss (typically, of valves) is the use of Kv values. The Kv value expresses
the amount of flow in a valve (at a given valve position) with a pressure loss of 1 bar. The special situation
with a fully open valve determines the Kvs value. The amount of flow at a prescribed pressure loss can be
calculated using the formula:

Q
(
m3/h

)
= Kv

√
∆p (bar). (3.3)

3.2 Head-discharge curves and operating point

Let us consider a single pipe with several elbows, fittings, etc. that ends up in a reservoir, see Figure 3.3.

The head Hs(ystem) needed to convey Q flow rate covers the pressure difference and the geodetic height
difference between the starting and ending point and the losses of the flow: the friction of the pipe, the loss
of the elbows, valves, etc., and the discharge loss.
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Figure 3.2: Minor loss coefficients.

Hs(ystem) =

(
p

ρg
+
v2

2g
+ z

)
@ pump outlet

−
(
p

ρg
+
v2

2g
+ z

)
@ pump inlet

=

(
p2

ρg
+
v2

2

2g
+ z + h′after the pump

)
−
(
p1

ρg
+ z1 + h′before the pump

)

=
p2 − p1

ρg
+ (z2 − z1) +

 ∑
ζ +

∑
λ
L

D︸ ︷︷ ︸
frictional loss of the pipeline

+1

 v2

2g

=
p2 − p1

ρg
+ (z2 − z1)︸ ︷︷ ︸

Hstatic

+

(∑
ζ +

∑
λ
L

D
+ 1

)
1

2gA2︸ ︷︷ ︸
B

Q2

= Hstat +BQ2 (3.4)

We see that the total head of the system consists of two parts: Hstat, that does not depend on the actual
flow rate and BQ2, which varies with the flow rate. Figure 3.3 depicts the pump head curve, the system
head curve and the intersection, that is, the actual flow rate and head that the pump conveys through the
system.
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Figure 3.3: Simple pumping system and its performance curves.

3.3 Problems

Problem 3.3.30

Consider the flow of water in a pipe of L = 100m, D = 100mm and the pipe roughness is e = 4mm. The
flow rate is Q = 36.7 m3/h. Find the pressure drop.

Solution:

� The flow velocity v = 36.7
3600/

0.12π
4 = 1.3m/s.

� The Reynolds number is Re = vD/ν = 1.3× 105 (the kinematic viscosity of water is ν = 10−6m2/s).

� If the pipe were hydraulically smooth, the friction coefficient would be λ = 0.316
4√
Re

= 0.0166.

� We use the Colebrook-White equation iteratively, starting from λ0 = 0.0166:

– Step 1: 1√
λ1

= −2 log10

(
2.51

Re
√
λ0

+ e
3.7D

)
= −2 log10

(
2.51

1.3×105
√

0.0166
+ 4

3.7×100

)
= 3.9203, thus

λ1 = 0.065.

– Step 2: 1√
λ1

= −2 log10

(
2.51

Re
√
λ1

+ e
3.7D

)
= −2 log10

(
2.51

1.3×105
√

0.065
+ 4

3.7×100

)
= 3.9262, thus λ1 =

0.0649. This is reasonably close to λ1, hence we stop the iteration.

� Finally, the pressure drop is ∆′p = λ LD
ρ
2v

2 = 0.0649 100
0.2

1000
2 1.32 = 54.84kPa = 0.548bar.

Problem 3.3.31

Calculate the head loss of the pipe depicted in the figure below as a function of the volume flow rate!
Parameters: ζA = 1.5, ζB,D = 0.26, ζC = 0.35, ζF = 0.36, λ = 0.0155, Ds = Dp = D = 0.6[m] and
Q = 0.4[m3/s]. Solution:

� Static (geodetic) head + dynamic (friction) losses of the pipe: Hpipe = Hstat +Hfriction

� Volume flow rate: Q = cs(uction)Apipe,suction = cp(ressure)Apipe,pressure = cApipe

� The ’extra’ 1 in the pressure side (...ζD + 1) represents the outflow losses.
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� Hstat = 8 + 4 = 12[m], Ls = 7 + 6 = 14[m], Lp = 12 + 20 + 8 = 40[m]

Hpipe = Hstat +KQ2 = Hstat +

[(
λ
Ls
Ds

+ ζA + ζB

)
c2s
2g

+

(
λ

∑
Lp

Dp
+ ζF + ζC + ζD + 1

)
c2p
2g

]
=

= 12[m] + 3.25[s2/m5]×Q2[m3/s]2

Problem 3.3.32

The artificial fountain Beneath the St. Gellert is fed by two pipelines of 30m length. The height distance
between the pump and the fountain is 22m. The diameter of the pipes is D1 = 100mm and D2 = 70mm,
the friction coefficient of the straight segments is λ = 0.02 and the friction coefficient of the other segments
(bends, etc.) is ζ = 0.5. Assuming that the flow velocity in the second pipe is 1.5m/s, calculate the the
required head. Calculate the flow velocity in the second pipe and the overall flow rate of the common pump
feeding the two pipes.Assuming 65% overall (pump+motor) efficiency, calculate the energy demand for 100
days and the cost of the operation if the energy tariff is 32HUF/kWh. (Solution: Without the bypass line:
H = 22.826m[], Q = 0.01678[m3/s], P = 5.78[kW ] and Cost = 443691HUF .)



Fluid Machinery 43

Problem 3.3.33
A pump delivers Q = 1200[dm3/min] water from an open-surface well, whose water level is 25[m]
below the default level. The pressure side ends 5[m] above the default level and the water flows into
an open-surface swimming pool. The diameter of the pipe on the suction side is Ds = 120[mm] and
Dp = 100[mm] on the pressure side. The loss coefficients are ζs = 3.6 and ζp = 14 (without the
outflow losses). Calculate the required pump head! (Solution: Hp,req. = 35.7[m]) Draw a sketch of
the system! (Figure3.4)

Solution:

The points which marked with I and II indicates the beginning and the end of the pump. The whole
system is between 1′ − 2 points. The end of the draft tube shall be deep under the fluid surface to
avoid the air intake. But in this problem we neglect the x value (the height between the end of the
tube and the fluid surface).
Bernoulli equation between 1′ and I: e1

′ = eI. + hs
′ it follows eI.

′ = e′1 + hs
′

Bernoulli equation between II and 2: eII. = e2 +hp
′, in these formulas, e denotes the “Bernoulli sum”

of meter units.The volume flow rate is based on the description of the problem Q = 1200dm3/min =
0, 02m3/s. The head losses for the intake and the delivery ports:

hs
′ = ζs

vs
2

2g
= ζs

1

2g

Q2

As
2 = 3.6× 1

2× 9.81
× 0.022(

0.122 × π
4

) 2

= 3.6× 1

2× 9.81
× 0.022

0.011312
= 0.5738m

hp
′ = ζp

vp
2

2g
= ζp

1

2g

Q2

Ap
2 = 14× 1

2× 9.81
× 0.022(

0.12 × π
4

) 2

= 14× 1

2× 9.81
× 0.022

0.0078542
= 4.627m

v2 =
Q

Ap
=

0.02

0.01131
= 2.546m/s

(the specific kinetic energy of the water flow leaving at this speed is lost in the swimming pool (2),

its name is the discharge loss,
v22
2g )

Hst = z2 − z1 = 25− (−5) = 30m (static head)

The head of the system (static head+ discharge loss):

Hsystem = Hst+
v2

2

2g
= 30 +

2.5462

2× 9.81
= 30.33m

The head of the pump:

Hpump = eII. − eI. = (e2 + hp
′)− (e1

′ − hs′) = e2 − e1
′ + hp

′ + hs
′ =

=

(
p2

ρg
+
v2

2

2g
+ z2

)
−
(
p1′

ρg
+
v1′

2

2g
+ z1′

)
+ hp

′ + hs
′

at the surface of the fluid p1 = p0 (atmospheric pressure), and v1 = 0, because of the relatively large
surface of the well, this equation is substituted in the 2nd parentheses of the above equation. Using
that p2 = p0 is also true:

Hsz =

(
p2

ρg
+
v2

2

2g
+ z2

)
−
(
p1

ρg
+
v1

2

2g
+ z1

)
+hn

′+hs
′ =

(
p0

ρg
+
v2

2

2g
+ z2

)
−
(
p0

ρg
+

0

2g
+ z1

)
+hn

′+hs
′

Hsz =
v2

2

2g
+ z2 − z1 + hn

′ + hs
′ = 35.53m

But we can also write that the head of the pump covers the head of the system as well as the losses:
Hsz = Hsystem + hn

′ + hs
′ = 30.33m+ 4.627m+ 0.5738m = 35.53m
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Figure 3.4: Hydraulic system

Problem 3.3.34

The submergible pump shown in the picture below delivers Q = 30l/s water into the basin. The pipe
collecting the water of five equal pumps has a diameter D. The inner diameter of the pressure tube connecting
the pump with the collecting pipe is d. Find the Bernoulli enthalpy difference between the two ends of the
system, and the pump head! Further data are: D = 400mm, λD = 0.018, d = 160mm, λd = 0.021, ζfilter = 3
, ζnrv = 0.25, ζbd = 0.35, ζ2bd = 0.5, ζbD = 0.22. (Solution: ∆esystem = 11.07m, Hpump = 12.80m)

Problem 3.3.35

The head of a 4 stage pump is 68 m, the speed of revolution is 1450 1
min . This pump conveys water through

a horizontal pipe with diameter D = 120 mm. The volumetric flow rate is 0.03 m3

s . The friction coefficient
of the pipe is λ = 0.025. Find the length of the pipe, after which an additional pump needs to be built in
the system, if the requirement is that the pressure in the pipe cannot be lower than it is at the suction side!
Calculate the same distance in the case when the pipe diameter is D = 160 mm! When fewer pumps are
in the system, the cost of the investment is obviously lower. Calculate the approximation of the investment
cost as a function of the pipe diameter! (hint: the investment cost has two parts: one which is proportional
to the pipe length per pump, and another which is proportional to the material cost (thickness of the pipe)).
(Solution: L1 = 910.5 m, L2 = 3835 m, cost = k1

D5 + k2D
2.)
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Problem 3.3.36

Find the operation point of a pump which operates a fountain in a lake! The diameter of the pipe at the
outlet is 30 mm, and the water jet has to reach a height of 20 m. The elevation of the jet can be calculated
from Newton’s law and the gravitational acceleration. However, due to the breaking up of the jet into drops,
the jet reaches only 80 % of the theoretical height. At the suction side of the pump, there is a filter, which
is characterized by the loss coefficient ζs = 0.7. At the pressure side, the length of the pipe is L = 1 m, the
friction coefficient is λ = 0.02, and there are two elbows with loss coefficient ζe = 0.2 for each of them. The
diameter of the pipe at the suction and pressure side is D = 80 mm. Find the specific speed of the pump,
if the speed of rotation is n = 1470 1

min and the pump has two stages! Calculate the height of the water

jet, if the speed of rotation drops to n = 970 1
min ! (Solution: Q = 0.01565 m3

s , H = 25.668 m, nq = 27.13,
hfountain,n=970 = 8.71 m.)

Problem 3.3.37

In a concrete pipe with diameter Do = 2800 mm (λo = 0.03), there is a smaller pipe with diameter Di =
1000 mm (λi = 0.02). The inner pipe is in the center of the outer pipe. The length of both pipes is
L = 540 m. The height difference is ∆h = 3 m, and this geodetic head drives the flow. Find the volumetric
flow rate

1. when there is no smaller pipe in the larger pipe and

2. when the smaller pipe is in the larger one!

The friction coefficients should be weighted with the wetted area! (Solution: Q1 = 70713 m3

h , Q2 =

51830 m3

h .)



Chapter 4

Fans

4.1 Problems

Problem 4.1.38

A fan conveys air that’s density is 1.2 kg
m3 . The pressure difference between the pressure and suction sides is

200 Pa. The volumetric flow rate is Q = 0.4 m3

s , the diameter of the duct at the suction side is D1 = 200 mm,
and the duct diameter at the pressure side is D2 = 250 mm. Find the static and total pressure difference
created by the fan! Find the useful power of the fan! (Solution: ∆pstat = 102.8 Pa, ∆ptot = 142.6 Pa,
Pu = 57.03 W).

Problem 4.1.39

The mean diameter of an axial fan is Dm = 500 mm, the speed of rotation is n = 1450 1
min . The inlet blade

angle is β1 = 9.1◦, the blade angle at the outlet is β2 = 12.3◦, and the axial velocity is cax = 6.2 m
s . Find

the ideal total pressure difference created by the fan using Euler’s turbine equation! What is the actual total
pressure difference, if the hydraulic efficiency is ηh = 80%? Find the static pressure difference! (Solution:
∆ptot,id = 433.9 Pa, ∆ptot = 347.1 Pa, ∆pstat = 324.1 Pa).

46
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Problem 4.1.40
How does the pressure difference change for the axial CPU fan in Problem 2.2.12, if we install guiding
vanes after the fan that eliminate the circumferential velocity component of the flow at the exit?
(Note that this problem is only a demonstration of the calculation. In reality, CPU fans are never
equipped with guiding vanes, because their efficiency is not the most important parameter. A more
important parameter of CPU fans is noise.)
Solution: The calculation of problem 2.2.12:

� Aring =
(D2

o−D
2
i )π

4 = 0.00137 m2

� Dmean = Do+Di
2 = 0.03425 m

� umean = u1 = u2 = Dmeanπn = 4.913 m
s

� cax = c1,ax = c2,ax = u tanβ1 = 1.788 m
s

� q = ηvolAringcax = 0.00184 m3

s

� w2u = cax
tan β2

= 2.131 m
s

� ∆cu = u− w2u = 2.782 m
s

� ∆ptotal,ideal = ρu∆cu = 17.1 Pa

� ∆ptotal = ηh∆ptotal,ideal = 14.5 Pa

The guiding vane eliminates the circumferential velocity component, while the axial velocity remains
the same because the continuity equation needs to be satisfied. Using all this information, we can
use Bernoulli’s equation between the inlet and the outlet of the guiding vane:

p2 +
ρ

2
c22 = p2 +

ρ

2
(c2ax + c22u) = p3 + c23 = p3 + c2ax.

In the equation above, the index 2 denotes the outlet of the impeller blade, which is the same as the
inlet of the guiding vane; the index 3 denotes the outlet of the guiding vane. From this equation, the
pressure difference p3 − p2 can be calculated:

dp = p3 − p2 =
ρ

2
c22u =

1.25

2
· 2.7822 = 4.838 Pa.

∆ptotal,vane = ∆ptotal + dp = 19.36 Pa.

Problem 4.1.41

The acoustic power in a bus station is Pac = 4.3 mW. Find the acoustic power level! How does the power
level change, if the acoustic power changes to Pac,1 = 2Pac, Pac,2 = 5Pac, Pac,3 = 8Pac, Pac,4 = 0.1Pac?
(Solution: Lw = 96.33 dB, Lw,1 = 99.35 dB, Lw,2 = 103.32 dB, Lw,3 = 105.37 dB, Lw,4 = 86.33 dB).

Problem 4.1.42

An axial fan, which has no guiding vanes, conveys air at volumetric flow rate Q = 2 m3

s , density ρ = 1.2 kg
m3 ,

while the static pressure difference is pst = 120 Pa. Find the total pressure difference, if the diameter of
the pipe is D = 450 mm! Find the useful power! Calculate the efficiency, if the power of the motor is
Pin = 500 W! The speed of the fan is n = 960 1

min . Find the sound power level of the fan, using the formula:
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LW = 97+10 · log10(Q ·∆ptot · ( 1
η −1))+32 · log10(u2

a )(dB). The sonic speed is a = 340 m
s . Draw the velocity

triangles at the tip of the fan! In the calculations, you can ignore the fact that the hub locally increases
the velocity, and the leakage losses and the loss due to the circumferential velocity component can be also
ignored.

(Solution: ∆ptot = 215 Pa, Pu = 430 W, η = 0.86, LW = 77.8 dB, u = 22.62 m
s , cax = 12.58 m

s ,
∆cu = 7.92 m

s )

Problem 4.1.43

The dryers in a forage dryer facility are spatially separated. The air to the dryers is conveyed by two identical

centrifugal fans, that’s performance curve is ∆pfan,tot = 1200 − 300
(

Pa·s2
m6

)
Q2. The characteristic curve of

the dyers is ∆pdryer,tot = 900
(

Pa·s2
m6

)
Q2. Find the volumetric flow rate, is one dryer is connected one fan!

Find the operating point, if two in parallel connected dryers are supplied by (i) two fans in series connection
or (ii) two fans in parellel connection!

(Solution:Q1 = 1 m3

s , Qseries = 1.706 m3

s , Qparallel = 2 m3

s )

Problem 4.1.44
The ”snow cannon” of a ski slope is an axial fan, that accelerates air that’s density is ρ = 1.32 kg

m3 to

velocity c = 30 m
s . Following the impellers, a mass flow rate of ṁ = 4 kg

s water is sprayed into the
air, and the water is accelerated to the speed of the air. Find the impulse change of the water! Find
the pressure required to accelerate the water, if the cross-section of the of the fan after the impellers
is A = 0.2 m2. Find the static and total pressure difference, if the air-water mixture exits directly to
the open after the fan! Sketch the static and total pressure along a streamline!

� The watr needs to be accelerated from 0 to 30 m/s; the impulsa change is ∆I = ṁwc = 120 kgm
s2 .

� This impulse change is coeverd by the pressure difference of the pump: A∆p = ∆I, hence
∆p = 600Pa.

� After the water injection, the average density of the water-air mixture is ρm = Qairρair+Qwρw
Qair+Qwater

=
30m/s×0.2m2+4kg/s

6m3/s+0.004m3/s , which is the weighted average of the densities, wieghted by the mass flow

rates. We also have Qair = 30m/s×0.2m2 = 6m3/s and Qw = 4kg/s/1000kg/m3 = 0.004m3/s.

� The dynamic pressure of the mixture is 894 Pa, see Figure 4.1.

Figure 4.1: Pressure distribution in the ”snow cannon”.
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Problem 4.1.45

The nominal area of the radiator of a car engine cooler is A =
0.12 m2, and it’s loss coefficient is ζ = 1.2. The performance

curve of the cooling fan is ∆ptot = 147(Pa)− 300 ·
(

Pa·s2
m6

)
(Q−

0.3)2. The fan conveys the hot air with density ρ = 1.1 kg
m3 from

it’s suction side through the radiator. The outer diameter of
the fan is Do = 310 mm, and the hub diameter is Di = 140 mm.
The air, after it leaves the fan, arrives to the engine space
and slows down, while it’s pressure reaches the pressure of the
ambient air.

Write down Bernoulli’s equation for a stading car, between the
far-field point in front of the radiator and the suctions side of
the fan, and an other Bernoulli-equation between the pressure
side of the fan and the engine space. Using these equations
and the performance curve of the fan, find the volumetric flow
rate! Sketch the static, dynamic and total pressure along a
streamline, between the far field point - suction side and the
pressure-side - engine space!

(Solution: Q = 0.7036 m3

s )

Problem 4.1.46

Find the relative pressure needed to support an inflatable tennis court tent, id the are if the tent is 22×40 m2,
and the mass of the tent is m = 3000 kg. How long does it take to set up such an inflatable tent, if the

performance curve of the fan we use is ∆ptot = 70 Pa− 42 ·
(

Pa·s2
m6

)
Q2 and the average height of the tent is 5

m? The density of the air is ρ = 1.3 kg
m3 , the cross-section of the fan at the pressure side is A = 0.2 m2, and

the fan conveys the air between two open spaces! Find the stationary leakage flow rate from the tent, if the
area of the holes on the tent (which ensure a cross flow through the tent to provide fresh air) is Al = 0.05 m2!
Find the relative pressure in the tent!

(Solution: ∆p = 33.4 Pa, t = 1.54 h, v = 0.469 m3

s , ∆pstat = 57 Pa)



Chapter 5

Control

5.1 Adjusting a desired operating point

5.1.1 Terminology

Consider the problem of setting a desired Qd flow rate at the pipeline system with head-discharge problem
of Hs. If we simply connect a pump to the system, the provided flow rate will not be the desired one but
the the flow rate corresponding to the intersection of the pump and pipeline curve. By controlling either the
pump or the system (via valves), we can achieve the desired flow rate. However, it is typical that either the
Qp flow rate of the pump or the Hp head of the pump is not the same as that of the pipeline system

When making decisions on pump or fan control, we use two following important quantities.

Control efficiency. This quantity is the ratio of the useful power and the input power, that is

η =
Puseful
Pinput

=
QdρgHs(Qd)

QpρgHp(Qp)
(5.1)

Specific energy consumption. This quantity is the ratio of the input power and the flow rate, that is

SEC =
Pinput
Qd

=
Pinput
V/t

=
energy consumed

volume of fluid
, (5.2)

that is, the energy consumption of conveying 1 m3 of fluid in the system.

We shall analyse three ways of control:

1. Control via a valve connected in series.

2. Control via a valve connected in parallel, i.e. by-pass valve.

3. Control via a changing the pump revolution number.

50
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5.1.2 Valve in series

new pump

v

Qd(esired)
Q

H

Hp

pipeline

valve

pump
Hs(ystem)

operating point 
without controloperating point 

H’

Figure 5.1: Control via a valve connected in series.

In the case of series valve control, we add
a throttle valve at the pressure side of the
pump. (And never at the suction side,
due to the danger of cavitation!) As the
three element are now connected in se-
ries, the flow rate is common, while the
pressure will change.

The efficiency is η = QdρgHs
Ppump

, where

Ppump = HpρgQd/ηpump(Qd), hence we
have η = ηpump(Qd)Hs/Hp. That is,
the ratio of the system head and the
pump head, multiplied by the efficiency
of the pump at the operating point. The
specific energy consumption is SEC=
ρgHp(Qd)/ηpump(Qd).

This type of control introduces new head
loss at the pressure side, resulting in a
higher overall pipeline loss, which than
reduces the head of the pump. The power lost on the throttle valve is P ′v = QdρgH

′
v.

5.1.3 Bypass valve (parallel)

valve

Q

Hs

dQ vQ

pQ

dQ vQ

Q

H

pipeline

pump

operating point 

without control

new pump
operating point 

p

Figure 5.2: Control via a valve connected in series.

In the case of a bypass valve, we add a
throttle valve parallel with the pump to
allow backflow of unnecessary fluid into
the suction-side reservoir. As the three
element are now connected in parallel,
the flow rate adds up, while the pressure
difference is the same.

The efficiency is η = QdρgHs
Ppump

, where

Ppump = HsρgQp/ηpump(Qp), hence we
have η = ηpump(Qp)Qs/Qp. That
is, the ratio of the desired flow
rate and the pump flow rate, multi-
plied by the efficiency of the pump
at the pump operating point. The
specific energy consumption is SEC=
ρgHp(Qp)Qp/Qd/ηpump(Qp).

This type of control does not introduce
new head loss, but allows a portion of
the (too large) pump flow rate back to
the reservoir. The power lost on the throttle valve is P ′v = QvρgHs.

5.2 Pump revolution number control

A common way of setting pump flow rate is to vary the revolution number. Intuitively, decreasing the pump
revolution number will result in lower flow rate, while increasing it will result in higher flow rate.
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Combining the affinity laws Q2/Q1 = n2/n1 and H2/H1 = n2
2/n

2
1 give H2 =

(
H1/Q

2
1

)
Q2

2 := aQ2
2. This

simply means that while changing the revolution number, the operating point moves along an central parabola
aQ2 that starts from the origin and passes through the original point (Q1, H1). The affinity law can be used
only between point lying on the same central parabola.

See the first problem in the next section for a worked example.

5.2.1 Problems

Problem 5.2.47

A pump running at 1470[rpm] with Hpump = 45− 2781Q2 head delivers water into a pipeline with Hpipe =
20 + 1125Q2. Calculate the required revolution number for the reduced flow rate Q′ = 0.05[m3/s].

Solution:

� The actual working point is given
by the solution of Hpump = Hpipe,
which gives Q = 0.08[m3/s] and
H = 27.2[m].

� Affinity states that while vary-
ing the revolutionary speed, H/n2

and Q/n remain constant. Thus,
also H/Q2 remains constant, let’s
denote this constant by a. So,
while varying the revolutionary
speed, the working point moves
along the central parabola (see fig-
ure), given by Hap = aQ2.

However, as Q′ is given and we also know that this point has to be located on the pipeline characteristic, we
know thatH ′ = 20+1125·0.052 = 22.81[m]. Thus, the parameter of the affine parabola is a = H ′/Q′2 = 9125.

Q∗ is given by the intersection of the affine parabola and the original pump characteristic: Hap(Q
∗) =

Hpump(Q
∗), which gives Q∗ = 0.06148[m3/s] with H∗ = 34.5[m].

Now we can employ affinity between Q∗ and Q′:

n′ = n∗
Q′

Q∗
= 1470× 0.05

0.06148
= 1195.5[rpm]

and just for checking the calculation

H ′ = H∗
(
n′

n∗

)2

= 34.5× 1195.52

14702
= 22.81[m].

Problem 5.2.48

Solve the previous control problem (pump: Hpump = 45 − 2781Q2, pipeline: Hpipe = 20 + 1125Q2, desired
flow rate: Q′ = 0.05[m3/s]) using a throttle at the pressure side of the pump and also with a bypass line.
Compare the resulting operations in terms of power loss!
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Problem 5.2.49

A pump, whose characteristic curve is given by Hpump = 70 − 90000[s2/m5]Q2, works together with two
parallel pipes. The main pipe is given by H1 = 30 + 100000[s2/m5]Q2. Calculate the head-flow relationship
H2(Q) of the side pipe, whose opening results in a flow rate of 480[l/min] in the main pipe. The static head
of the second side pipe is 25[m].

Solution:

� Head of the main pipe at the prescribed flow rate: Q1 = 480[l/min] = 0.008[m3/s] → H1(Q1) =
36.4[m]
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� The head is the same, so the flow rate of the pump is Hp(Qp) = H1(Q1) → Qp =
√

70−36.4
90000 =

0.0193[m3/s]

� Thus, the flow rate on the side pipe is Q2 = Qp −Q1 = 0.0193− 0.008 = 0.0113[m3/s]

� The actual characteristic of the side pipe: H2(Q2) = 25 + aQ2
2 = 36.4[m] → a = 36.4−25

0.01132 = 89279

� The solution is H2(Q2) = 25 + 89279Q2.

Problem 5.2.50

Pumps I and II feed pipes 1 and 2 shown in the figure below. Their characteristics are:

HI = 45m− 24900s2/m5Q2

HII = 35m− 32200s2/m5Q2

H1 = 10m+ 4730s2/m5Q2

H2 = 15m+ 8000s2/m5Q2

Find the flow rates and heads if valve ”V ” is closed, and if it it opened. 0.023054084926172 (Solution: closed:

H = 31.766 m, Q = 0.02305 m3

s ; open: H = 25.18m, Q = 0.03567 m3

s )

Problem 5.2.51

Two pumps, H1 = 70m − 50000s2/m5Q2 and H2 = 80m − 50000s2/m5Q2 can be coupled parallel or in
series. Which arrangement will deliver more liquid through the pipe Hp = 20m+25000s2/m5Q2? (Solution:

in series: Q = 0.03224 m3

s , H = 46 m; in parallel: Q = 0.03818 m3

s , H = 56.44 m)

Problem 5.2.52

Pump S, with the characteristitc curve HS = 37 − 0.159Q2, is feeding an irrigation system consisting of
parallel pipes. The units are Q[m3/h] and H[m]. Each pipe contains at its end a sprinkler. The pipes are
20m long, their inner diameter is 25mm, the friction coefficient is 0.03. The sprinklers discharge 4m3/h
water at 2bar overpressure, their characteristics can be written as Hspr = KsprQ

2.

� Draw the sketch of the irrigation system with 3 parallel pipes!

� How much water is discharged if only one pipe is in operation?
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� How many parallel pipes can be fed if the overpressure before the sprinklers must be 2bar?

(Solution: single pipe: Q1 = 4.5 m3

h , H = 33.7 m; the pump can supply 2 pipes only)

Problem 5.2.53

The characteristics of a pump supplying a small village with water is Hp = 70− 330Q2. The village network
is modeled by the curve Hcd = 25 + 30Q2 during the day while the night operation can be described by
Hcn = 25 + 750Q2. A high water tower is attached to the delivery tube of the pump, its characteristics is
HT = 40− 55|Q|Q. Here Q is positive if water flows down from the tower. The units in the formulae are [Q]
= m3/s; [H] = m. Draw a sketch of the water system. Find the flow rates of the pump, village and tower
both for day and night operation. Find the head of the pump both for day and night! Use a millimeter
paper to draw the charasteristics curves! (Solutions: Qpump = 0.33m3/s and 0.29m3/s; Qvillage = 0.6m3/s
and 0.15m3/s; Qtower = 0.275m3/s and −0.14m3/s. Hpump = 36m and 41m.)

Problem 5.2.54

How much water is delivered by the pump Hp = 70− 45000Q2 through the pipe system Hs = 20 + 20000Q2

? The flow rate must be reduced to 0.015m3/s. This can be done either by throttling control or by using
a by-pass control. Draw the pump-pipe-valve arrangements for both cases. How large is the hydraulic
loss in the valves in the first and in the second case? The power consumption of the pump is Pinput =
9.4 + 240Q − 50000Q2. How large is the specific energy consumption f in the two cases? The units in

the formulae are: [m], [m3/s], [kW ]. (Solution: Q = 0.0277 m3

s , P ′throttle = 5.2 kW, P ′bypass = 4.0 kW,

SEC = 0.237 kWh
m3 and SEC = 0.285 kWh

m3 , respectively.)

5.3 Pumps and pipes connected in series or parallel

In Sec. 3.2, the determination of the operation point of a single pump working to a single hydraulic system
is discussed in details, see also Fig. 3.3. In many cases, however, the flow rate Qs or the head Hs required
by the system cannot be satisfied by a single pump efficiently. Or it is much more feasible economically
(e.g., investment costs) to use several smaller pumps instead of a single much larger one. The pumps can be
connected in a serial or in a parallel way. Each has its own specific application/purpose: increase the flow
rate (parallel) or increase the produced head (serial) when the required pressure difference of the system
is high (e.g., large height differences). The difficulty in both cases is the determination of the equivalent
characteristic curve of the coupled pumps to be able to find the operation point with the system. This is
the main topic of the forthcoming sections. Figure 5.3 shows two pump stations with pumps connected in a
parallel (left-hand side) and in a serial (right-hand side) way. In more complex pump stations, the mixture
of serial and parallel connections of pumps can also be found depending on the technological needs.

From the system point of view, it is also possible that a pump (or a pump station) have to provide flow
rates (and head) to different systems or a single but a complex system. In general, a system might also be
composed by several subsystems built-up by a mixture of serial and parallel connections (similarly to pump
stations), where each subsystem has its own characteristic curves. Again the difficulty is the derivation of
an equivalent characteristic curve of the whole systems.

From sizing point of view, the system of a technology or an industrial project is usually/mainly given, and
the specific needs of the application drive its design. On the other hand, a pump station has to be designed
according to the needs of the given hydraulic systems. Naturally, it might also be possible that modifications
on the system have to be carried out for efficiency reasons, and the complete design is an iterative process.
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Figure 5.3: Pump stations with pumps connected in parallel (left) and in series (right).

5.3.1 Theory of serial connection

In order to intorduce the basics of serial connections, consider two pump connected in series, and working to
a single system. The block diagram of such a configuration is presented in Fig. 5.4. Due to the principle of
conservation of mass, the volue flow rate (assuming inclompressible flow) of the three hydraulic elements (the
two pumps and the system) must be equal, and denoted simply by Q. In contrast, the head “production”
of the pumps are additive; that is, the overall head of the two pumis is

Hp3 = Hp1 +Hp2. (5.3)

Keep in mind that the head can always be reagarded as presusre difference since Hp ≈ ρg∆pp, where ρ
is the density and g gravitational acceleration. In this sense, the pressure elevated by the first pump is
further increased by the second pump. The overall pressure difference produced by the pumps (sum of the
heads) is completely consumed by the system. This is the basis of operating point introduced in Sec. 3.2.
Mathematically, the solution of the algebraic equation

Hp3(Q) = Hp1(Q) +Hp2(Q) = Hs(Q) (5.4)

yields the flow rate Qo and head Ho of the operating point.

Figure 5.4: Block diagram of two pumps connected in series, and working to a single system.

To be specific, the characteritic curves of the pumps and the system is summatized as follows

Hp1(Q) = Ap1 −Bp1Q2 = 80− 80000Q2, (5.5)

Hp2(Q) = Ap2 −Bp2Q2 = 40− 60000Q2, (5.6)

Hs(Q) = As +BsQ
2 = 60 + 400000Q2, (5.7)

where the units of the head H and the volume flow rate Q are m and m3/s, respectively. The general form
of such charateristic curves via the constants Ai and Bi are discussed already in Sec. 2.2.5 and Sec 3.2; thus,
it is not repeated here. The left-hand side of Fig. 5.5 represents the functions defined by Eqs. (5.5)-(5.7) by
the black (pumps) and the red (system) curves.

Tha main task is to unite the two characteristic curves of the pumps in order to determine the operation
point. According to Eq. (5.10), it is simply the summary of the heads. As the characteristic curves are
already expressed for the heads in Eqs. (5.5)-(5.7), the overall characteristic curve of the two pumps can be
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Figure 5.5: A typical characteristic curve of a spring-loaded pressure relief valve. Left: the volume flow rate
Qprv as a function of the pressure difference ∆p. The theoretical (black) curves are also depicted. Right:
the pressure difference ∆p as a function of the flow rate Qprv.

obtained analitically very easily:

Hp3(Q) = Hp1(Q) +Hp2(Q),

= 80− 80000Q2 + 40− 60000Q2,

= 120− 140000Q2,

(5.8)

shown by the blue curve in Fig. 5.5. The operating point of the whole hydraulic sstem is at the intersection
of the blue and the red curves marked by the big black cross. Numerically, the volume flow rate of the
operation point Qo can be calculated by equating the two characteristic curves:

Hp3(Qo) = Hs(Q
o),

120− 140000(Qo)2 = 60 + 400000(Qo)2,

60 = 540000(Qo)2,

Qo =

√
60

540000
= 0.01054

m3

s
.

(5.9)

The head of the system cab be claculated by substituting the flow rate of the operating point Qo into
Eq. (5.7):

Ho
s = As +BsQ

2 = 60 + 400000(Qo)2 = 104.4 m. (5.10)

since the same volume flow rate Qo flows through both pumps, their individual operation point is at the
crossing of the red vertical line at Qo with the charcteristic curves, see the small black crosses in the left-hand
side of Fig. 5.5. Again, the heads of the operating points of the pumps can be obtaines by subtitution:

Ho
p1 = Ap1 −Bp1Q2 = 80− 80000(Qo)2 = 77.1 m, (5.11)

Ho
p2 = Ap2 −Bp2Q2 = 40− 60000(Qo)2 = 33.3 m. (5.12)

With the above-described calculations, all the properties (heads and flow rates) of all the elements of the
whole hydraulic system could be obtained, see also the lables in the left-hand side of Fig. 5.5 pointig to the
projetions to the horizontal and vertical by the red thin lines.

In some cases, it may happen that the characteristic curves are not given in an analitical form; for instance,
only a graphical curve is given in an old catalouge or only some measured points are available. In this
case, there is an alternative, graphical solution to approximate the operating point. The first step is the
division of the volume flow rate range into a discrete set of values represented by the vertical dashed lines
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in Fig. 5.5 left. Second, evaluate the pump and the system charaterictic curves at these flow rate values
(see the black and red dots). It is possible that this process is already done by a measurement. Next, the
equivalent charateristic curve of the two pumps can be obtained by summing the values of the heads of the
black dots at a given dashed line, and mark the corresponding point on the same dashed line. The result is
the series of blue dots in Fig. 5.5 left. Drawing (by hand) the approximated charateristic curves through the
calculated dots, the intersection of the blue and the red curves will define the estimated operating point as
usual. Finally, the projection via the thin red lines, the values of the operating heads and flow rates of the
individual pumps and the system can be determined as well.

5.3.2 Theory of parallel connection

5.3.3 Operation point of complex connections

5.3.4 Problems

Problem 5.3.55

The performance curve of a pump is Hp = 70− 10000Q2. This pump is connected to two pipe systems with
characteristic curves Hs1 = 5000Q2 + 10 and 7500Q2 + 15. In these formulae, the head is in meters, and

the unit of the volumetric flow rate is m3

s . Find the operation point, if the two pipe systems are connected
(a) in series, or (b) in parallel to the pump. Draw the performance curves in both cases!

Solution: when the pipe systems are in series connection, the volumetric flow rate through them is the same,
and in the calculation of the performance curves, the heads are summed at each volumetric flow rate. This
means:

Hs,ser = Hs1 +Hs2 = 12500Q2 + 25.

In the operation point, the head of the pump equals the head required by the system:

Hs,ser = Hp,

12500Q2 + 25 = 70− 10000Q2,

Qps =

√
45

22500
= 0.04472

m3

s
,

H = Hp(Qps) = Hs,ser = 70− 10000 · 0.044722 = 50 m.

When the two pipe systems are connected in parallel, the pressure drop/head is the same on them, while
their volumetric flow rates are different. In this case, to calculate the characteristic curve of the total system,
the volumetric flow rates should be summed at each head. To do this, we need to rearrange the performance
curves to be functions of the head:

Hp = 70− 10000Q2 → Qp =

√
70−H
100

Hs1 = 5000Q2 + 10→ Qs1 =

√
2
√
H − 10

100

Hs2 = 7500Q2 + 15→ Qs2 =

√
3
√
H − 15

150
.

Note that the expressions above are only valid for a certain H interval, since the argument of the square
root function cannot be negative. Calculating the sum of the two parallel pipes, then equating the pump
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and the system, solving for H, the operating point can be identified:

Qs,par = Qs1 +Qs2 =

√
2
√
H − 10

100
+

√
3
√
H − 15

150
= Qp =

√
70−H
100

H = 20.03 m,

Q = 0.07069
m3

s
.

The performance curves are displayed in Figure 5.6.

Figure 5.6: Performance curves of the problem. The circles denote the operation points.

Problem 5.3.56

Two pumps, with performance curves Hp1 = 50− 30000 ·Q2 and Hp2 = 40− 20000 ·Q2 are conveying water
through a pipe system that’s characteristic curve is Hs = 3 + 7250 · Q2. Find the operating points if the

two pump are connected (a) in series or (b) in parallel! (Solution: Hser = 14.02 m, Qser = 0.03898 m3

s ,

Hpar = 25.43 m, Qpar = 0.05562 m3

s )

Problem 5.3.57

A pump that’s performance curve is HI(m) = 70− 50000 s2

m5Q
2, conveys water through a pipe system with

characteristic curve Hs(m) = 20 + 10000 s2

m5Q
2. Find the volumetric flow rate! The volumetric flow rate is

increased to Q = 0.032 m3

s , using a second pump with performance curve HII(m) = 80− 50000 s2

m5Q
3. The

operating point of the system is set by a throttle valve at the pressure side. How would the loss power be

smaller: if the two pumps were connected in series or in parallel? (Solution: Q = 0.0285 m3

s , P ′ser = 5.45 kW,
P ′par = 9.88 kW)
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Problem 5.3.58

Two pump operate in parallel. The performance curve of the first pump and it’s pressure side pipeline is
the following: HpI = 40 − 0.17Q2, Hs,I = 5 + 0.4Q2; the data for the second pipe is HpII = 27 − 0.135Q2,

Hs,II = 0.8Q2. The head in in meters, and the unit of the volumetric flow rate is m3

h . These two pipes are
joined, and convey water through a third pipeline with characteristic curve Hs,III = −3 + 0.63Q2. Find the

operating point! (Solution: Q = 6.473 m3

h , H = 23.4 m.)

5.4 Water hammer, hydraulic transients

Up to this point, turbomachinery is discussed from a stationary operation point of view. Such a discussion
have its own right, since most of its lifetime, an installation operates in steady-state fashion. One of the main
reasons is the efficiency: a device is usually designed to operate efficiently over a specific parameter range
around the designed operation point. Thus, a significant deviation from this optimal point can considerably
increase the operating costs or needs expensive additional equipment to overcome this issue. The previous
sections of this chapter are devoted to this problem. Moreover, transient operations are usually causing
greater wear of the elements of a device, which might result in a lower lifetime and additional maintenance
and investment costs.

We shall see in this section that transient phenomenon in a hydraulic system also plays a significant role,
although its timespan is usually many orders of magnitude smaller than steady-state operations. The starting
and stopping of hydraulic machinery are two natural examples. The phenomenon discussed in this section
is the generated pressure surge or wave by the sudden closure of a valve. This pressure wave, having even
tenths of bars peak value, can cause major problems; for instance, the rupture or the collapse of a pipe.
Transients can also be generated in a domestic environment by the sudden close (e.g., within a fraction of a
second if it is allowed by design) of the faucet in the bathroom or the kitchen. The vibration of the pipeline
system for a few seconds and even a small blow at the tap might be observable. Such an effect needs to be
avoided at all costs in industrial environments. Since the peak amplitude of the pressure is usually much
higher due to the much larger mass of liquid involved during the process.

5.4.1 Introduction to the transient phenomenon in pipes

Consider a pipeline in steady-state operation, i.e. with constant flow rate (constant flow velocity). In order
to regulate the flow rate, a valve is placed at the end of this pipe, see the left-hand side of Fig. 5.7. Let us
assume a limit case where the valve is suddenly (infinitely fast) closed. Naturally, the huge mass of moving
liquid in the pipe cannot stop immediately; it still moves towards the end of the pipe. However, the fluid
packages at the valve are already stopped. The result is an initiated compression (pressure) wave propagating
along the pipe with sonic velocity (sound speed) a, see the diagrams in Fig. 5.7 below the schematic drawings
of the pipe-reservoir systems. The pressure wave is often referred to as shock wave or positive surge, and its
magnitude (amplitude) is denoted by ∆p. This pressure amplitude ∆p (flux of momentum) built up in the
system covers the energy required to stop the liquid particles. That is, before the shock front, the liquid is
still moving, while after the shock front, the liquid is already stopped. By analogy, the propagation of the
pressure wave with a finite speed of a is a similar phenomenon as the propagation of a voice in the air via
pressure waves (compression or depression of air). Any information in a system can be transferred only with
a finite speed. Another kind of analogy is when the first wagon of a moving train hits the bumper and stops.
The rest of the wagons, connected by springs, are still moving, and they stop one by one, one after another.
Here, the information (stop of the train) is again propagating with a finite speed along the wagons. Also,
the generated “pressure wave” is a compression wave in a sense that the springs connecting the wagons are
compressed.

Now consider a similar pipeline system, but the valve served to regulate the flow rate is placed at the
beginning of the pipe rather than at its end. The situation is similar to the case described above. The main
domain of liquid is still moving, while the fluid particles at the valve are already stopped (at the moment of
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the closure). The difference is that a depression wave ∆p (the absolute value of the pressure is below the
system pressure) is build up that tries to disrupt the fluid particles. The speed of the shock front propagation
a is approximately the same as in case of the compression wave discussed above. According to the train
analogy, the last wagon of a moving train is stopped, while the rest of the wagons are again stopped only
one by one, one after another. However, here the springs connecting the wagons are stretched. That is, the
initiated wave is a depression wave.
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Figure 5.7: Water hammer; sudden closure at the (left) end of the pipe and (right) beginning of the pipe.

In real situations, the infinitely fast closure of a vale cannot be realised. Instead, a valve is closed by a
certain amount of finite time, causing a certain amount of velocity difference (∆v) in the fluid flow. That is,
the liquid is not perfectly stopped; only its velocity is changed. In order to achieve the generated velocity
difference, a pressure wave (compression or depression) that provides the energy necessary to decrease the
liquid velocity must be built up in the system. The speed of the propagation of the shock front is still a. That
is, even though the valve is not totally closed, pressure waves with large amplitude can still be presented in
the system.

In order to “feel” how much energy is contained in a fluid flow in a pipeline, consider a typical configuration
of an L = 1 km long pipe with a diameter of D = 200 mm. Assume that the liquid is water with density
ρ = 1000 kg/m3. The mass of the liquid in the pipe is

m = ρL
D2π

4
≈ 31.4 t. (5.13)

In order to change the velocity of this mass of water by ∆v = 1 m/s within t = 1 s, the required amount of
power is

P =
Ekin
t

=
1

t

1

2
m∆v2 ≈ 15.7 kW, (5.14)

where Ekin is the kinetic energy difference of the liquid.

With the above-described introduction, a quick overview of the phenomenon could be provided. In the rest
of the section, we shall proceed with specific calculations and try to answer the following questions. How
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can the speed of sound a in a pipe or of a pure liquid be calculated? What is the magnitude ∆p of the
generated pressure wave? Furthermore, how it is related to the speed of sound a and the velocity difference
∆v? Finally, how can we avoid/soften the generation of such a pressure wave?

5.4.2 The sound speed in liquids and in pipes

The propagation of sound (or signal) in any medium is inherently related to the compressibility. In case of
an absolutely rigid material (naturally, this assumption is always hypothetical), the sound speed is infinite.
That is, any disturbance at a point appears immediately at another point of the material. This is the case
for incompressible liquids. Although in many cases, the assumption of incompressibility is a reasonable
simplification, in reality, every material is compressible; therefore, a finite speed of sound exists. From
thermodynamics, it is well-known that the speed of sound can be calculated from the constitutive law
(equation of state) of a substance. For water, the simplest equation of state can be written as

p = p0 + Ef
ρ− ρ0

ρ0
, (5.15)

where p is the pressure, Ef is the bulk (elasticity) modulus of the fluid, and ρ is the density. The subscript
0 indicates a reference point where both the pressure p0 and the density ρ0 are known. Equation (5.15)
expresses a linear relationship between the pressure p and density ρ. Observe that the density is increasing
with increasing pressure. The second power of the speed of sound can be obtained from the following partial
derivative:

a2 =
∂p

∂ρ
≈ ∆p

∆ρ
(5.16)

expressing how much pressure difference is necessary to change the density by a single unit. Performing the
partial derivative on Eq. 5.15, the speed of sound reads as

a =

√
Ef
ρ0
≈

√
Ef
ρ
. (5.17)

If the density does not change much during the compression/depression, ρ0 can be replaced by a simple mean
value of the density denoted by ρ. For water, the value of the bulk modulus is approximately Ef = 2.1 GPa,
the density is approximately ρ = 1000 kg/m3; thus, the speed of sound for pure water is about a = 1449 m/s.

The above-derived value for sound propagation is valid only for rigid pipes when the elasticity modulus
of the pipe is much higher than that of water. If this is not the case, the speed of sound is significantly
altered. Due to the elevated (decreased) pressure, the diameter of the pipe is increased (decreased) via elastic
deformation. The change in the volume of the pipe acts as if the fluid became more compressible. Note that
due to the change of the cross-section, more fluid can be pushed into the pipe. In order to take into account
the elasticity of the pipe, a reduced elastic modulus Er is written as

1

Er
=

1

Ef
+

D

δEp
, (5.18)

where D, δ and Ep are the diameter, thickness and the elastic modulus of the pipe, respectively. Typical
values for Ep are ranging between 600 MPs and 900 MPa. The reduced speed of sound is now defined as

a =

√
Er
ρ
. (5.19)

Consider a pipe with a diamater of D = 110 mm and a thickness of δ = 18.3 mm with Ep = 800 MPa, the
speed of sound is reduced to a = 354 m/s.
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5.4.3 Allievi principle: the pressure amplitde for fast closure

In order to develop sizing equations to avoid water hammer problems, the relationship between the amplitude
of the generated pressure wave ∆p and the velocity change ∆v need to be found. For this, the macroscopic
balances of mass and momentum around the shock front are formulated; and with reasonable simplifications,
the required expression shall be established. Consider a frame of reference (co-ordinate system) moving along
the pipe together with the shock front with speed a. For a better visibility, the related picture in the bottom
of Fig. 5.7 is magnified in Fig. 5.8; thus, additional notations can be added without overcrowding the figure.
The vertical dashed line denotes the shock front itself. On the left-hand side of the shock, the pressure
and density are p and ρ, respectively. The cross-section of the pipe is A1, where the vector dA1 denote
the surface element vector. The velocity at this pipe section is v + a. The addition of a is necessary as
our co-ordinate system is moving with a speed of a. Therefore, the two velocities must be added together.
On the right-hand side of the shock, the pressure and the density are elevated by ∆p and ∆ρ, respectively.
Moreover, the velocity of the fluid flow is reduced by ∆v. The resulted outflow velocity from the investigated
pipe section is v−∆v+a. Observe that due to the moving reference frame, the addition a is again necessary.
The cross-section in the right-hand side is A2 and the corresponding surface element vector is dA2. Due to
the increased pressure after the shock front (righ-hand side), the cross section A2 is larger than that of in
the left-hand side A1. The difference is ∆A = A2 − A1 located at the shock front as a ring shaped surface.
Its surface element vector is marked by d∆A.

Figure 5.8: Shock front in a moving frame reference with speed a. The pressure wave is generated by a
sudden closure of a valve at the end of the pipe.

From elementary fluid dynamics, it is well-know that the macroscopic momentum balance for the fluid
package bounded by the red dashed line in Fig. 5.8 in an integral form reads as

∂

∂t

∫
V

(ρv) dV +

∫
A

ρv (v · dA) +

∫
A

pdA =

∫
V

ρgdV. (5.20)

This integral equation express that the momentum of the bounded fluid package can be changed by forces
acting on the bounding surfaces (e.g., pressure, inertia) and on the volume (e.g., gravity). In this equation,
v denote the velocity vector at a given point on the surface or in the volume in general. In the moving frame
co-ordinate system, the fluid flow is stationary; thus, the first integral is identically zero. Moreover, let us
neglect the effect of gravity; consequently, the last integral in the right-hand side of Eq. (5.20) is zero as well.
The simplified equation is ∫

A

ρv (v · dA) +

∫
A

pdA = 0. (5.21)

Observe that in the surface integrals, the surface elements dA are vectors, and they are pointing in the
outward direction (by convention). In general, performing the integrations in Eq. (5.21) is a cumbersome
task. However, assuming that the velocity vectors are constants (using the mean velocity at every point of
the cross-sections) and that they are always perpendicular to the cross-sections, the integrations can be done
by elementary calculations. That is, they become simple multiplications of the magnitude of the integrands
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and the area of the surfaces. It must be stressed that the proper sign of the vectors has to be taken into
account. Demonstrate this with an example:∫

A1

ρv (v · dA1) = −ρ (v + a)
2
A1. (5.22)

The magnitude of general velocity vector v is v + a at cross-section A1. Let the positive direction denoted
by x, see Fig. 5.8. As the surface element vector dA1 is pointing to the negative direction, the value of the
integral is negative. Keep in mind that the second power of the velocity vector is always positive regardless
of its actual direction. Performing all the integrations in Eq. 5.21 in a similar way for the surfaces A1, A2

and ∆A, the following algebraic equation can be formulated

−ρ(v + a)2A1 + (ρ+ ∆ρ)(v −∆v + a)2A2 − pA1 − (p+ ∆p)∆A+ (p+ ∆p)A2 = 0. (5.23)

Through the surface ∆A, there is no fluid flow. That is why there is only a pressure-related term associated
with this surface. Taking into account that ∆A = A2 −A1 the above equation simplifies to

−ρ(v + a)2A1 + (ρ+ ∆ρ)(v −∆v + a)2A2 + ∆pA1 = 0. (5.24)

With the help of the continuity equation (conservation of mass)

ṁin = ṁout, (5.25)

ρ(v + a)A1 = (ρ+ ∆ρ)(v −∆v + a)A2, (5.26)

Eq. (5.24) is transformed into

−ρ(v + a)2A1 + ρ(v + a)A1(v −∆v + a) + ∆pA1 = 0. (5.27)

This equation can be further simplified to

−ρ(v + a)A1∆v + ∆pA1 = 0. (5.28)

Eliminating A1 and assuming that the sound speed a (orders of hundreds of m/s) is much larger than the
flow velocity (orders of m/s), the well-known formula for the Allievi principle can be formulated:

∆p ≈ ρa∆v. (5.29)

The simple equation of Eq. 5.29 expresses that a sudden change in the velocity ∆v (not necessarily a complete
stop of the fluid) initiate a pressure wave with an amplitude of ∆p. Let us assume that the sound speed is
a = 350 m/s, the density is ρ = 1000 kg/m3 and the velocity change is ∆v = 1 m/s. The generated pressure
amplitude is approximate ∆p = 3.5 bar.

5.4.4 Pressure amplitude for slow closure

Intuitively, one can “feel” that during a prolonged closure of a valve, the amplitude of the compres-
sion/depression waves can be softened. However, Eq. (5.29) is independent from time. Therefore, the validity
limit of Eq. (5.29) has to be determined. As it is already discussed in details in Sec. 5.4.1, the initiated pres-
sure wave travels along the pipe. At the other end of the pipe, the pressure wave is reflected and travels back
to the valve. During the reflection, the compression wave becomes a depression wave or vice verse. It can be
fairly assumed that during the time needed to the pressure wave travelling back and forth, the transient is
decayed enough, and a new stationary operation is settled down. This means that Eq. (5.29), which defines
the pressure amplitude of transients, is valid only if the closure of the valve is faster than the characteristic
time Tp of the pipe (time needed for the pressure wave travelling back and forth). The value of Tp can be
easily calculated from the length of the pipe L and the speed of sound a:

Tp =
2L

a
. (5.30)



Fluid Machinery 65

If the time of the closure Tc of the valve is smaller than Tp, transient phenomenon takes place, the Allievi
principle is valid, and the pressure amplitude can be calculated from Eq. (5.29). Otherwise, the liquid mass
in the pipe slows down via quasi-steady states and Newton’s second law has to be used:

F = m
dv

dt
, (5.31)

∆pA = ρLA
dv

dt
. (5.32)

Simplifying with the cross-section A of the pipe, the pressure difference yields

∆p = ρL
dv

dt
≈ ρL∆v

∆t
. (5.33)

As an example, let us assume a pipe length of L = 1000 m, and that the speed of sound is a = 1449 m/s
(rigid pipe wall). Thus, the characteristic time of the pipe Tp = 2L/a = 1.38 s. Furthermore, assume that
the velocity difference is ∆v = 1 m/s, the density is ρ = 1000 kg/m3 and the closure time is Tc = 2 s > Tp.
Applying Eq. (5.33), the generated pressure amplitude is ∆p = 5 bar.

5.4.5 Dangerous consequences of the pressure waves

The pressure amplitude computed either by Eq. (5.29) or Eq. (5.33) must be superimposed to the actual
system pressure either in the positive direction (compression wave/shock wave, left-hand side of Fig. 5.7)
or in the negative direction (depression wave, right-hand side of Fig. 5.7). It must be stressed that both
transient and quasi-steady cases are dangerous, see the pressure amplitude calculations of typical examples
in Sec. 5.4.3 and Sec. 5.4.4. Moreover, both the compression and depression waves can also be dangerous.
Assume that the system pressure is 5 bar and the pressure amplitude is 12 bar. If the pressure wave is a
compression wave (valve closure at the end of the pipe, see Fig. 5.7), the pipe system has to withstand an
elevated peak pressure level of 5 + 12 = 17 bar, which can easily result in a pipe burst. On the other hand,
when the wave is a depression wave (valve closure at the beginning of the pipe), the theoretical minimum
pressure would be 5 − 12 = −7 bar. This is not possible as the liquid/water will evaporate (cavitate),
and some sections of the pipe will be filled up with vapour preventing the pressure to drop down below
the absolute vacuum. Later on, when the large mass of liquid stops and starts to move back towards the
valve (e.g., because the pipe has a slightly positive incline), a large mass of liquid will hit the valve and
its surroundings. Also, the pipe can collapse due to the vacuum as shown in the left-hand side of Fig. 5.9
(especially with large diameters). Examples for serious damages are shown in Fig. 5.9 for depression wave
(left-hand side) and compression wave (right-hand side).

Figure 5.9: (Left) collapsed expansion joints due to depression wave. (Right) pipe burst due to chock wave
(compression wave).
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5.4.6 Summary and prevention of water hammer

Before the discussion of techniques to avoid water hammer phenomenon, let us summarize the findings of
the previous sections via some bullet points:

� Closure of valves results in pressure waves ∆p due to the change of the velocity of the fluid flow. In
this sense, any “action” causing a velocity difference can also cause pressure waves (e.g., starte and
shut down of pumps). Sometimes the phenomenon is related to a complicated interaction of devices;
for example, the sudden closure of a check valve (prevent backflow of the liquid) during the shut down
of a pump.

� The speed a of the propagating pressure wave depends on the equation of state of the liquid and the
material properties of the pipe.

� If the closure time Tc is smaller than the characteristic time of the pipe Tp, the pressure amplitude is
obtained from the Allievi principle Eq. (5.29); otherwise, it can be calculated from Newton’s second
law Eq. (5.33).

� Both the compression and depression waves are dangerous for the system. However, due to the possible
cavitation effect and the collapse of the pipe (especially for large diameters), the depression wave is
usually more dangerous.

As water hammer is an undesirable phenomenon, many techniques have been developed to avoid its harmful
consequences. Let us summarize them again via some bullet points:

� Keep the fluid velocity low. The smaller the possible velocity difference, the smaller the generated
pressure amplitude.

� Close the valve, shut down or start the pump slowly or in a controlled manner.

� Use air vessels that are large tanks half-filled with air. The highly compressible gas inside can signifi-
cantly soften the pressure waves. That is, it acts as a “shock absorber”. The disadvantage is the high
investment costs.

� Air valves are often used to remediate the consequences of low pressure in a depression wave by releasing
air into the pipe. Thus, the pressure inside the pipe cannot be lower than the ambient pressure of the
environment. Moreover, the air also cushions the effect when the large mass of liquid starts to move
backwards and tries to hit the valve or the pump, see the discussion of the previous section.

5.4.7 Problems

Problem 5.4.59

The diameter of a pipe is NA150, the volumetric flow rate us Q = 44 m3

h , the relative pressure in the pipe is
5 bar, and the sonic velocity is a = 1200 m

s . Find the amplitude of the pressure wave, in case when the pump
at the beginning of the pipe suddenly stops! The flow velocity reaches zero faster than the characteristic
time of the pipe, therefore Allievi’s theory can be used. Is cavitation possible in the pipe? For the same
volumetric flow rate, find the diameter of the pipe, at which cavitation is no longer possible!

Solution:

Allievi’s theory states that

∆p = ρa∆v.
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The velocity of the fluid in then pipe is

v =
Q

A
=

4Q

D2π
=

4 · 44

0.152 · π · 3600
= 0.69

m

s
.

The amplitude of the pressure rate is given by

∆p = 1000 · 1200 · 0.69 = 828000 Pa = 8.3 bar.

Knowing the amplitude of the pressure wave and the relative pressure in the pipe, the smallest relative
pressure possible in the pipe is 5− 8.3 = −3.3 bar. This is impossible, the smallest relative pressure possible
is −1 bar. Below 0 bar relative pressure, cavitation is possible. To avoid this, the required pipe diameter is

∆p = ρa∆v = ρa
4Q

D2π
→ D =

√
ρa

4Q

∆pπ
=

√
1000 · 1200 · 4 · 44

5 · 105π · 3600
= 0.193 m

Therefore, with an NA200 pipe, caviation can be avoided when the pipe is closed faster than the characteristic
time of the pipe.

Problem 5.4.60

During the reconstruction of a water pipe, the old asbestos cement (AC) pipe is changed to a steel pipe.
The sonic speed is aAC = 920 m

s and asteel = 1200 m
s in the asbestos cement and steel pipe, respectively.

The velocity of the fluid is 0.7 m
s , and the pressure is p = 7 bar. Find the amplitude of the pressure wave

for both pipes, assuming the end of the pipe is closed fast (under the characteristic time)!

(Solution: AC: dp = 6.44 bar, pmax = 13.44 bar. Steel pipe: dp = 8.4 bar, pmax = 15.4 bar)

Problem 5.4.61

A NA200 pipe that’s length is 8 km, conveys water to an open reservoir. The volumetric flow rate is
Q = 3600 l

min , and the end of the pipe is above the water level of the reservoir. The friction factor is
λ = 0.018. Find the pressure at the beginning of the pipe! Assuming that the velocity decreases linearly in
time, find the ratio of the characteristic time of the pipe and the time under which the valve at the pressure
side of the pump can be closed! The criteria is that the pressure cannot be lower than the atmospheric
pressure! The sonic speed is a = 1200 m

s . Find the characteristic time of the pipe! Plot the velocity of the
fluid as a function of time!

(Solution: p = 13.13 bar, T
Tchar

= 1.75, Tchar = 13.33 s)



Chapter 6

Positive displacement pumps

/noteadded from Volumetric Pumps and Compressors

6.1 Introduction

6.1.1 Pumps - general introduction

A pump is a machine that moves fluids (mostly liquids) by mechanical action. Pumps can be classified into
three major groups according to the method they use to move the fluid:

Centrifugal pumps are used to transport fluids by the conversion of rotational kinetic energy to the
hydrodynamic energy of the fluid flow. The rotational energy typically comes from an engine or
electric motor. The fluid enters the pump impeller along or near to the rotating axis and is accelerated
by the impeller. Common uses include water, sewage, petroleum and petrochemical pumping.

Positive displacement pumps have an expanding cavity on the suction side and a decreasing cavity on
the discharge side. Liquid flows into the pumps as the cavity on the suction side expands and the
liquid flows out of the discharge as the cavity collapses. The volume is constant given each cycle of
operation.

Miscellaneous pumps are the rest of the pumps, such as Eductor-jet pump, airlift pump, etc.

Pumps operate by some mechanism (typically reciprocating or rotary), and consume energy to perform
mechanical work by moving the fluid. Pumps operate via many energy sources, including manual operation,
electricity, engines, or wind power, come in many sizes, from microscopic for use in medical applications to
large industrial pumps.

Mechanical pumps serve in a wide range of applications such as pumping water from wells, aquarium filtering,
pond filtering and aeration, in the car industry for water-cooling and fuel injection, in the energy industry
for pumping oil and natural gas or for operating cooling towers. In the medical industry, pumps are used
for biochemical processes in developing and manufacturing medicine, and as artificial replacements for body
parts, e.g. the artificial heart.

The two most important quantities characterizing a pump are the pressure difference between the suction
and pressure side of the pump ∆p and the flow rate delivered by the pump Q. For practical reasons, in the
case of water technology, the pressure head is usually used, which is pressure given in meters of fluid column:
H = ∆p

ρg . Simple calculations reveals that for water 1 bar (105Pa) pressure is equivalent of 10 mwc (meters

of water column).

68
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Figure 6.1: Two examples of pumps: (left) centrifugal pump (right) positive displacement pump (piston
pump)

Turbopumps

In the case of a turbopump, a rotating impeller adds energy to the fluid. The head is computed with the
help of Euler’s turbine equation

H =
c2uu2 − c1uu1

g

∣∣∣∣
c1u=0

=
c2uu2

g
(6.1)

while the flow rate is
Q = D2πb2c2m, (6.2)

with c2u and c1u being the circumferential component of the absolute velocity at the outlet and inlet,
respectively, u1 = D1πn and u2 = D2πn the circumferential velocities. c2m stands for the radial (meridian)
component of the absolute velocity at the outlet, D is diameter and b stand for the width of the impeller.
(See Figure 6.2 and Fluid Machinery lecture notes for further details.)

Figure 6.2: Velocity triangles on a centrifugal impeller.

Notice that the head (H) and flow rate (Q) are provided by the two component of the same velocity vector c2.
Thus, if H increases, Q decreases and vice versa. Thus in the case of turbomachines the pressure difference
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and the flow rate are directly connected and not independent. This dependency is described by the pump’s
performance curve, see Figure 6.3.

H, η

Q

design point

H(Q)

η(Q)ηmax.

Qopt.

Hopt.

Figure 6.3: Turbopump performance curves

An important quantity describing the shape of the impeller of a turbopump is the specific speed nq, defined
as

nq = n
Q

1/2
opt.

H
3/4
opt.

[rpm]
[m3/s]1/2

[m]3/4
. (6.3)

The dimension (unit) of nq is not emphasised and mostly omitted. The concept of specific speed can be used
to determine the pump type (i.e. radial/mixed/axial) which is capable of performing a pumping problem
efficiently.

Capacity

P
ow

er
, h

ea
d,

ef
fi

ci
en

cy

P
ow

er
, h

ea
d,

ef
fi

ci
en

cy

P
ow

er
, h

ea
d,

ef
fi

ci
en

cy

Capacity Capacity

40 60 80 100 150 200 30020

nq

Radial-vanes Francis-vanes Mixed-flow Axial-flow

Figure 6.4: Turbopump performance curves

Example 1. We have to pump clean water to an upper reservoir at 60 m height. The nominal power of
the driving electric motor is 5 kW, its revolution number is 3000 rpm. The flow rate is (assuming 100%
efficiency)

Pmotor = ∆p ·Q→ Q =
Pmotor

∆p
=
Pmotor

ρgH
= 8.49× 10−3 m3/s = 509 l/min (6.4)
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Hence the specific speed is

nq = n
Q

1/2
opt.

H
3/4
opt.

= 3000

(
8.49× 10−3

)1/2
(60)

3/4
∼= 12.8, (6.5)

which means that a centrifugal turbopump is suitable for this problem.

Example 2. Now consider the hydraulic cylinder depicted in Figure 6.5. The required pressure difference
is now ∆p = 200bar = 2× 107Pa, the power and the revolution number of the driving motor is the same as
before (5kW, 3000rpm).

m

p

Figure 6.5: Simple sketch of a hydraulic cylinder

First, find the flow rate of the pump (again, assume 100% efficiency):

Q =
Pmotor

ρgH
=

5000

9810 · 2000
= 2.55× 10−4 m3/s = 15.3 liter/min, (6.6)

which gives

nq = n
Q

1/2
opt.

H
3/4
opt.

= 3000

(
2.55× 10−4

)1/2
(2000)

3/4
= 0.16. (6.7)

Comparing this value with Figure 6.4 we see that this value is ’off’ the chart. Such a small nq value
would require an extremely large-diameter impeller, which is very thin. Besides the problems with the
high centrifugal stresses, from the fluid mechanical point of view, such a thin impeller introduces extremely
large fluid friction resulting in poor efficiency. Thus we conclude that pumping problems resulting in
high pressure difference and low flow rates (i.e. nq < say,10) cannot be efficiently solved by
centrifugal pumps.

Positive displacement pumps

Positive displacement pumps (PDPs) are typically used in high-pressure (above ∆p > 10bar, up to 1000-2000
bars) technology, with relatively low flow rate. These machines have an expanding cavity on the suction side
and a decreasing cavity on the discharge side. Liquid flows into the pumps as the cavity on the suction side
expands and the liquid flows out of the discharge as the cavity collapses. The volume is constant given each
cycle of operation.

The positive displacement pumps can be divided in two main classes (see Figures XXX)

� reciprocating

– piston pumps

– plunger pumps

– diaphragm pumps

– axial/radial piston pumps
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� rotary

– gear pumps

– lobe pumps

– vane pumps

– progressive cavity pumps

– peripheral pumps

– screw pumps

Figure 6.6: Some reciprocating pumps

Figure 6.7: Some rotary pumps

PDPs, unlike a centrifugal pumps, will produce the same flow at a given motor speed (rpm) no matter the
discharge pressure, hence PDPs are constant flow machines. A PDP must not be operated against a closed
valve on the discharge (pressure) side of the pump because it has no shut-off head like centrifugal pumps:
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a PDP operating against a closed discharge valve will continue to produce flow until the pressure in the
discharge line are increased until the line bursts or the pump is severely damaged - or both.

A relief or safety valve on the discharge side of the PDP is therefore absolute necessary. The relief valve can
be internal or external. The pump manufacturer has normally the option to supply internal relief or safety
valves. The internal valve should in general only be used as a safety precaution, an external relief valve
installed in the discharge line with a return line back to the suction line or supply tank is recommended.

Several types of PDPs can be used as motors: if fluid is driven through them (e.g. gear pump), the shaft
rotates and the same machine can be used as a motor.
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6.1.2 Basic characteristics of positive displacement machines

The pump displacement Vg is the volume of the liquid delivered by the pump per one revolution, assum-
ing no leakage (zero pressure difference between the suction and pressure side) and neglecting the fluid
compressibility. The ideal – theoretical – flow rate is

Qth = nVg (6.8)

where Qth is theoretical flow rate (liter/min), n is the revolution number of the pump shaft (rpm) and Vg
stands for the pump displacement, (cm3).

In the case of pumps, the actual outflow is less than the theoretical flow rate, due to the leakages inside
the pump. These losses are taken into by the volumetric efficiency ηvol: Q = ηvolQth = ηvol nVg. Other
types of losses (sealing, bearing, fluid internal and wall friction) are all concentrated into the so-called
hydromechanical efficiency ηhm, which connects the input and output power: Pinηhm = Pout. For pumps,
Pin = Mω and Pout = Q∆p. We have:

ηhmM 2πn︸︷︷︸
ω︸ ︷︷ ︸

Pin

= nVgηvol︸ ︷︷ ︸
Q

∆p

︸ ︷︷ ︸
Pout

→ ∆ppump =
2πM

Vg

ηhm
ηvol

(6.9)

In the case of motors, the input power is hydraulic power (Pin = Q∆p) and the output is rotating mechanical
power Pout = Mω. Due to the internal leakage, one has to ’push’ more fluid into the pump to experience
the same revolution number, hence Q = Qth/ηvol > Qth. We have:

ηhm
nVg
ηvol︸︷︷︸
Q

∆p

︸ ︷︷ ︸
Pin

= M 2πn︸︷︷︸
ω︸ ︷︷ ︸

Pout

→ ∆pmotor =
2πM

Vg

ηvol
ηhm

(6.10)

H (~Δp)

Q

n1

motor @ n1

theoretical @ n1

motor @ n2

pump @ n2 pump @ n1

n2<n1

Figure 6.8: Pump and motor performance curves for two different revolution mubers.

We conclude that for both pumps and motors,

Q ∝ n, Vg and ∆p ∝M,
1

Vg
.

(6.11)



Fluid Machinery 75

Which means that the pressure and the flow rate are independent for a given machine. The same behaviour
can be observed on the performances curve of these machines, see Figure 6.8. The theoetical performance
lines are vertical for a given revolution speed, meaning that the theoretical flow rate does not change when
varying the pressure.

However, the leakage flow rate through the small internal gaps of the pumps (motors) slighty change ths
theoretical behaviour. In the case of pumps, a portion of the flow rate flows back from the pressure side
to the suction side through these gaps, hence reducing the outflow of the pump. The higher the pressure
difference is, the higher the leakage flow rate is, hence the pump performance curves tend to ‘bend to the
left’ from the vertical, theoretical line. In the case of motors, where the fluid drives the shaft, we need larger
flow rates to reach the desired revolution number, hence the real curves ‘bend to the right’.
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6.2 Reciprocating Pumps

Piston/plunger pumps comprise of a cylinder with a reciprocating piston/plunger in it. In the head of the
cylinder the suction and discharge valves are mounted. In the suction stroke the plunger retracts and the
suction valves opens causing suction of fluid into the cylinder. In the forward stroke the plunger push the
liquid out the discharge valve.

With only one cylinder the fluid flow varies between maximum flow when the plunger moves through the
middle positions, and zero flow when the plunger is in the end positions. A lot of energy is wasted when
the fluid is accelerated in the piping system. Vibration and ”water hammers” may be a serious problem. In
general the problems are compensated by using two or more cylinders not working in phase with each other.

Several cylinders can be mounted to the same shaft: pumps with 1 cylinder are called simplex pumps, duplex
pumps have two cylinders (with π phase shift) while triplex pumps have three pumps with 2π/3 = 120
degrees phase shift. Pumps with even more pistons (5,7,9) are also common. Pumps with both sides of the
piston acting (deing in contact with the liquied) are called double-acting pumps.

6.2.1 Single-acting piston pumps

Inlet

Outlet

A

s

Figure 6.9: Single-acting piston pump

Consider the piston pump depicted in Figure 6.9. First, let us find the x(t) displacement of the piston as a
function of time. By virtue of the cosine law, we have

L2 = R2 + y(t)2 − 2Ry(t) cosϕ → y(t) = R cosϕ±
√
L2 +R2 (1− cos2 ϕ) (6.12)

with ϕ = ωt. Notice that if ϕ = 0, we must have y(0) = R + L, hence we need the ’plus’ case in the above
equation. The piston displacement is

x(t) = y(t)− y(π) = R
(

1 + cosϕ− λ−1
(

1−
√

1 + λ2 (1− cos2 ϕ)
))

, (6.13)

with λ = R/L. Now consider the terms in the bracket. First, 1 + cosϕ varies between 0 and 2. The second
term varies between 0 (cosϕ = ±1) and λ−1

(
1−
√

1 + λ2
)

(cosϕ = 0), which gives 0.2361, 0.099 and 0.0499
for λ = R/L = 1/2, 1/5 and 1/10, respectively. Hence we conclude that if λ < 0.2 (which s trus for many
real-life configurations), the error due to neglecting the λ−1(. . . ) term is less than 10%, which is acceptable.
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Hence we approximate the piston displacement as

x(t) ≈ R (1 + cos (ωt)) , v(t) ≈ −Rω sin (ωt) and a(t) ≈ −Rω2 cos (ωt) . (6.14)

As flow rate is Q = Av and the stroke is s = 2R, the instantaneous pressure side flow rate is (see also Figure
6.10)

Q(t) =

{
A s

2ω cos(ωt) if π < ϕ = ωt < 2π

0 if 0 < ϕ = ωt < π
(6.15)

The mean flow rate is computed by finding the volume of the fluid pushed to the pressure side in one period,
divided by the length of the period:

Qmean = Asn, (6.16)

that is, we have Vg = As, see (6.8). The maximum flow rate is (see (6.15))

Qmax = A
s

2
ω = πAsn = πQmean. (6.17)

x(t)

Q(t)

t

tT 2T

T 2T

s/2

Aωs/2

-s/2

-Aωs/2

V

Figure 6.10: Piston displacement (upper panel) and flow rate (∝ velocity) curves of a single-acting piston
pump.

Notice that this means that these pumps induce an extremely unsteady flow rate in the pipeline system,
that varies from Qmin = 0 flow rate up to Qmax = πQmean with a frequency of n (driving motor revolution
number). There are two ways of reducing this pulsation: (a) by using multiple pistons or (b) adding a
pulsation damper.
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6.2.2 Multiple piston pumps

The pulsation can be reduced by adding several pistons with an evenly distributed phase shift, see e.g. Figure
6.11.

Inlet

Outlet

Figure 6.11: Double-acting piston pump

If we have three pistons (triplex), the flow rates are

Q1(t) = max(0, Asnπ cos(ωt))

Q2(t) = max(0, Asnπ cos(ωt− 2π

3
)) and

Q3(t) = max(0, Asnπ cos(ωt− 2× 2π

3
)).

The overall flow rate is Q(t) = Q1(t) + Q2(t) + Q3(t). Let us define the pulsation factor measuring the
relative flow rate change as

δ =
Qmax −Qmin

Qmean
[%]. (6.18)

For example, for a single-acting pump we have

δ =
Qmax −Qmin

Qmean
=
πQmean − 0

Qmean
= π = 314 % (6.19)

Similar calculation for other number of pistons gives the values in Table 6.1. Figure 6.12 depicts the flow
rate for several numbers of pistons, where dashed lines are the individual flow rates while solid lines are the
pump flow rate (sum of the piston flow rates) and the pulsation factor as a function of the piston number.
Notice that if the number of pistons is odd (e.g. 3,5,7,9), the pulsation number is significantly lower.

Number of pistons 1 2 3 4 5 9
δ % 315 157 14 33 5 1.5

Table 6.1: Flow rate pulsation level as a function of the piston number.
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Figure 6.12: Pulsation factor as a function of the piston number.
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6.2.3 Axial piston pumps

An axial piston pump is a positive displacement pump that has a number of pistons in a circular array within
a cylinder block. It can be used as a stand-alone pump, a hydraulic motor or an automotive air conditioning
compressor. Axial piston pumps are used to power the hydraulic systems of jet aircrafts, being gear-driven
off of the turbine engine’s main shaft. The system used on the F-14 used a 9-piston pump that produced a
standard system operating pressure of 3000 psi and a maximum flow of 84 gallons per minute. Advantages:

� high efficiency

� high pressure (up to 1,000 bar)

� low flow and pressure ripple (due to the small dead volume in the workspace of the pumping piston)

� low noise level

� high reliability

Axial piston units are available in the form of pumps and motors in bent axis design or swashplate design
for medium- and high-pressure ranges. They are the main components in the hydrostatic transmission.
Compact size and high power density, economy and reliability are characteristic advantages which speak for
the use of hydrostatic transmissions, together with the fact that they meet the demand for high speed and
high torque, as well as optimum efficiency.

Figure 6.13: Axial piston pump

6.2.4 Radial piston pumps

In a radial piston pump the working pistons extend in a radial direction symmetrically around the drive
shaft, in contrast to the axial piston pump. These kinds of piston pumps are characterized by the following
advantages:

� high efficiency

� high pressure (up to 1,000 bar)

� low flow and pressure ripple (due to the small dead volume in the workspace of the pumping piston)

� low noise level

� very high load at lowest speed due to the hydrostatically balanced parts possible



Fluid Machinery 81

� no axial internal forces at the drive shaft bearing

� high reliability

A disadvantage are the bigger radial dimensions in comparison to the axial piston pump, but it could be
compensated with the shorter construction in axial direction.

Due to the hydrostatically balanced parts it is possible to use the pump with various hydraulic fluids like
mineral oil, biodegradable oil, HFA (oil in water), HFC (water-glycol), HFD (synthetic ester) or cutting
emulsion. That implies the following main applications for a radial piston pump: machine tools (e.g.,
displace of cutting emulsion, supply for hydraulic equipment like cylinders)

� high pressure units (HPU) (e.g., for overload protection of presses)

� test rigs

� automotive sector (e.g., automatic transmission, hydraulic suspension control in upper-class cars)

� plastic- and powder injection moulding

� wind energy

Figure 6.14: Radial piston pump

6.2.5 Diaphragm pumps

A diaphragm pump (also known as a membrane pump) is a positive displacement pump that uses a combi-
nation of the reciprocating action of a rubber, thermoplastic or teflon diaphragm and suitable valves either
side of the diaphragm (check valve, butterfly valves, flap valves, or any other form of shut-off valves) to
pump a fluid. The advantages of these pumps are:

� They provide leakage-free sealing, which can be important when pumping highly aggressive or toxic
fluids.

� They have good suction lift characteristics, some are low pressure pumps with low flow rates; others
are capable of higher flow rates, dependent on the effective working diameter of the diaphragm and its
stroke length.

� They can handle sludges and slurries with a relatively high amount of grit and solid content.

� Suitable for discharge pressure up to 1200 bar
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� They have good dry running characteristics.

� Good efficiency (can be up to 97%)

� Can handle highly viscous liquids.

However, as they are single (or sometimes double-acting) piston pumps, these pumps cause a pulsating flow
that may cause water hammer, which can be minimised by using a pulsation dampener.

Figure 6.15: Diaphragm pump
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6.3 Rotary pumps

6.3.1 Gear pumps

This is the simplest of rotary positive displacement pumps consisting of two meshed gears rotating in a
closely fitted casing. Fluid is pumped around the outer periphery by being trapped in the tooth spaces. It
does not travel back on the meshed part, since the teeth mesh closely in the centre. It is widely used on car
engine oil pumps, and also in various hydraulic power packs.

There are two main variations; external gear pumps which use two external spur gears, and internal gear
pumps which use an external and an internal spur gear. Some gear pumps are designed to function as either
a motor or a pump.

Figure 6.16: (left) external gear pump (right) internal gear pump

External gear pumps

Advantages:

� High speed

� High pressure

� Relatively quiet operation

Disadvantages:

� Four bushings in liquid area

� No solids allowed

� Fixed end clearances

Common external gear pump applications include, but are not limited to:

� Various fuel oils and lube oils

� Chemical additive and polymer metering

� Chemical mixing and blending (double pump)

� Industrial and mobile hydraulic applications (log splitters, lifts, etc.)

� Acids and caustic (stainless steel or composite construction)
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Internal gear pumps

Advantages:

� Only two moving parts

� Only one stuffing box

� Non-pulsating discharge

� Excellent for high-viscosity liquids

� Operates well in either directions

� Low NPSH required

� Single adjustable end clearance

� Easy to maintain

Disadvantages:

� Usually requires moderate speeds

� Medium pressure limitations

� One bearing runs in the product pumped

Common internal gear pump applications include, but are not limited to:

� All varieties of fuel oil and lube oil

� Resins and polymers

� Alcohols and solvents

� Asphalt, bitumen, and tar

� Food products such as corn syrup, chocolate, and peanut butter

� Paint, inks, and pigments

� Soaps and surfactants

� Glycol

6.3.2 Screw pump

Screw pumps feature two or three screws with opposing thread, that is, one screw turns clockwise, and the
other counterclockwise. The screws are each mounted on shafts that run parallel to each other; the shafts
also have gears on them that mesh with each other in order to turn the shafts together and keep everything
in place. The turning of the screws, and consequently the shafts to which they are mounted, draws the
fluid through the pump. As with other forms of rotary pumps, the clearance between moving parts and the
pump’s casing is minimal.

Advantages:

� Practically pulsation-free flow

� low fluid velocities → not sensitive for e.g. sand content

Disadvantages:

� Expensive
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Figure 6.17: (left) simple screw pump (right) double-screw pump used for pumping crude oil

6.3.3 Vane pump

Advantages:

� Handles thin liquids at relatively higher pressures

� Sometimes preferred for solvents, LPG

� Can run dry for short periods

� Develops good vacuum

Disadvantages:

� Not suitable for high pressures

� Not suitable for high viscosity

� Not good with abrasives

Applications:

� Aerosol and Propellants

� Aviation Service - Fuel Transfer, Deicing

� Auto Industry - Fuels, Lubes, Refrigeration Coolants

� Bulk Transfer of LPG and NH3

� LPG Cylinder Filling

� Alcohols

� Refrigeration - Freons, Ammonia
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Figure 6.18: Vane pump

6.3.4 Progressing cavity pump (eccentric screw pump)

Widely used for pumping difficult materials such as sewage sludge contaminated with large particles, this
pump consists of a helical shaped rotor, about ten times as long as its width. This can be visualized as a
central core of diameter x, with typically a curved spiral wound around of thickness half x, although of course
in reality it is made from one casting. This shaft fits inside a heavy duty rubber sleeve, of wall thickness
typically x also. As the shaft rotates, fluid is gradually forced up the rubber sleeve. Such pumps can develop
very high pressure at quite low volumes.

Figure 6.19: Progressive cavity pump.

6.3.5 Peristaltic pump

A peristaltic pump is a type of positive displacement pump used for pumping a variety of fluids. The fluid
is contained within a flexible tube fitted inside a circular pump casing (though linear peristaltic pumps have
been made). A rotor with a number of ”rollers”, ”shoes” or ”wipers” attached to the external circumference
compresses the flexible tube. As the rotor turns, the part of the tube under compression closes (or ”occludes”)
thus forcing the fluid to be pumped to move through the tube. Additionally, as the tube opens to its natural
state after the passing of the cam (”restitution”) fluid flow is induced to the pump. This process is called
peristalsis and is used in many biological systems such as the gastrointestinal tract.
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Advantages

� No contamination. Because the only part of the pump in contact with the fluid being pumped is the
interior of the tube, it is easy to sterilize and clean the inside surfaces of the pump.

� Low maintenance needs. Their lack of valves, seals and glands makes them comparatively inexpensive
to maintain.

� They are able to handle slurries, viscous, shear-sensitive and aggressive fluids.

� Pump design prevents backflow and syphoning without valves.[5]

Disadvantages

� The flexible tubing will tend to degrade with time and require periodic replacement.

� The flow is pulsed, particularly at low rotational speeds. Therefore, these pumps are less suitable
where a smooth consistent flow is required. An alternative type of positive displacement pump should
then be considered.

Figure 6.20: Peristaltic pump
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6.3.6 Pulsation dampener

A pulsation dampener is an accumulator with a set pre-charge that absorbs system shocks while minimizing
pulsations, pipe vibration, water hammering and pressure fluctuations. By minimizing pulsation in the
system components like regulators, solenoids, sensors, etc., pumps will see decreased wear and have longer
life. Pulsation dampeners are tied directly onto the discharge manifold or plumbed immediately downstream
of the pump.

Figure 6.21: Pulsation dampener.

The sizing of the dampener goes as follows. The instantaneous and mean flow rate for a single piston pump
is

Q(t) = Qmax sin(ωt) and Qmean =
Qmax
π

, where Qmax = πADsn. (6.20)

The pump flow rate is Qp(t) =
∑N
i=1Qi(t), where Qi is the flow rate of the ith piston, i.e. (6.20) shifted

with an angle of φi = (i − 1) 2π/N , N being the number of pistons. The average flow rate of the pump is
Qp,mean = N Qmean.

The flow rate entering the damper is

Qd(t) = Qp(t)−Qp,mean, (6.21)

while the volume of fluid entering (or leaving) the damper up to time t is

Vd(t) =

∫
Qd(t)dt. (6.22)

In the case of a single piston, we have

Qd(t) =

{
Qmax

(
sin(ωt)− 1

π

)
if 0 ≤ t ≤ T

2

−Qmax/π if T
2 ≤ t ≤ T

and (6.23)

Vd(t) =

{
Qmax

(
− 1
ω (cos(ωt)− 1)− t

π

)
if 0 ≤ t ≤ T

2

−tQmax/π if T
2 ≤ t ≤ T.

(6.24)

The above expression for Vd also ensures that Vd(0) = 0. Maximum and minimum volume occurs at Qp = 0,
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i.e.

ωtmin = arcsin
1

π
→ tmin =

0.3239

2π
T = 0.0516T. (6.25)

ωtmax = π − arcsin
1

π
→ tmax =

π − 0.3239

2π
T = 0.4484T. (6.26)

The corresponding volumes are

Vmin = −0.0081QmaxT = −0.0081π︸ ︷︷ ︸
−0.0256

QmeanT︸ ︷︷ ︸
Vstroke

and Vmin = 0.1673QmaxT = 0.5256Vstroke, (6.27)

hence the total volume variation on the damper is

∆V = Vmax − Vmin = 0.55Vstroke (6.28)

A similar calculation for a double-acting piston gives

tmin = 0.1098T, tmax = 0.3902T and ∆V = Vmax − Vmin = 0.2105Vstroke (6.29)

For pumps with 3 or 4 pistons, the analytical derivation is cumbersome, instead, one can simply plot the
graphs and evaluate the results numerically giving ∆V = 0.009Vstroke for triplex and ∆V = 0.044Vstroke for
four-cylinder pumps, see Figure 6.22. The volume change is given in the percentage of the stroke:

∆V = νVstroke, with

{
N = 1 2 3 4
ν = 0.55 0.21 0.044 0.009

(6.30)
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Figure 6.22: Volume change in the pressure dampener for different number of pistons.
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Now let us find the pressure pulsation of the gas due to the fluid volume change ∆V . We start off by defining
the pre-charge pressure ppc (e.g. 80% of system pressure), at which the gas volume is V0 (i.e. the nominal
volume of the damper) and the required level of damping δ = (pmax − pmin)/psys. The corresponding gas
volumes will be Vmax (corresponding to pmin) and Vmin (corresponding to pmax). At system pressure, the
the gas volume is Vsys. We also have V gmax = V gmin + ∆V .

Notice that if the process is isotherm (which is usually true in real-life cases), we have)

δ =
pmax − pmin

psys
=

∆p

psys
≈ ∆V

Vsys
(6.31)

We also have

pmin = ppc
V0

Vmax
, psys = ppc

V0

Vsys
and pmax = ppc

V0

Vmin
, (6.32)

and the pressure pulsation level is

δ =
∆V

Vsys
=
νVstroke
V0

ppc
psys

(6.33)

hence the required dampener volume is

V0 =
νVstroke
ppc
psys

δ

(6.34)

Example. We have a duplex pump (N = 2, ν = 0.2105) with s = 60mm stroke and D = 63mm diameter.

� The stroke volume is Vstroke = D2π
4 s = 0.187 liter

� The precharge pressure is set to 80% of system pressure: ppc/psys = 0.8

� The required level of damping is δ = 5%.

� The nominal dampener volume is V0 = 0.2105×0.187
0.8×0.05 = 0.984 ≈ 1 liter.
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6.4 Pressure relief valves (PRVs)

It is shown in Sec. 6.1.2 that the flow rate of a positive displacement pump is hardly affected by the system
pressure due to its nearly vertical characteristic curve, see Fig. 6.8. Therefore, small changes in the flow
rate can cause large deviations in the system pressure. In an extreme case, when the volume flow rate of a
hydraulic motor needs to be zero (e.g., the motor has to be stopped) and the system is closed by a valve, the
pressure will increase almost indefinitely since the pump will provide nearly the same amount volume flow
rate regardless of the system pressure. In such cases, the system pressure quickly rises and, if not vented,
some component will break, leading to a failure in the equipment. To prevent the excessive increase of the
system pressure, a pressure relief valve (PRV) must be mounted as close to the pump as possible. These
devices open above a pressure threshold value (sometimes called set pressure ∆pset) allowing a controlled
backflow to the tank or reservoir. If the system pressure is below the set pressure, the PRV remains closed
and does not affect the system behaviour. There are two main types of PRVs: direct spring-loaded valves
for low flow rate (see Sec. 6.4.1), and pilot-operated valves for high flow rate (see Sec. 6.4.3).

6.4.1 Direct spring loaded hydraulic PRVs

The first type of pressure relief valve discussed in this section belongs to the family of spring-loaded valves.
The main idea is that a valve body or spool is displaced by the system pressure against the force of a
pre-compressed spring. If the displacement is large enough, the pressure relief valve opens, and a certain
amount of volume flow rate is drained from the system. Direct spring-loaded pressure relief valves are simple
and robust, and they can operate with a wide range of chemicals and temperatures. They usually fit into
standard piping dimensions. However, they are prone to leakage (if no soft seat is incorporated). In addition,
there can be instability issues during their operation called chatter, when the valve body hits the valve seat
periodically causing massive damage. The sketch of a piston valve is depicted in Fig. 6.23 and its operation
principle is discussed in details in the following.

The three basic parts of the piston pressure relief valve is a cylinder, a spool (or piston) and a pre-compressed
spring. The precompression is usually given as a displacement x0. Depending on the net force acting on
the spool, it can move up or down. The force from the spring tries to push the spool downward, which is
proportional to the displacement of the spool x (see also the co-ordinate system x in Fig. 6.23):

Fs = s(x+ x0), (6.35)

where s is the spring constant. In contrast, the pressure produced by the pump and guided to the bottom
part of the spool pushes the spool upward. The force originated from this system pressure can be written as

Fp = AD∆p, (6.36)

where AD = D2π/4 is the cross-section of the cylinder or the spool. As usual, ∆p is the system pressure
given as an overpressure. The force balance of the spool reads

s(x+ x0) = AD∆p. (6.37)

It is clear that the force of system pressure must overcome the spring force from the precompression sx0

and the spring force increase sx due to the displacement x. Thus, the minimum pressure needs to cause any
displacement of the spool and start to open the pressure relief valve is

∆pset =
sx0

AD
, (6.38)

where ∆pset is called the opening pressure or the set pressure. The value of ∆pset clearly separates the closed
and opened states of the pressure relief valve. If ∆p < ∆pset, the valve is closed; that is, the edge of the
spool marked by the red line in Fig. 6.23 is below the other red horizontal line associated to the cylinder that
represents the zero displacement of the spool (x=0). In contrast, when ∆p > ∆pset, the relative position of
the two red lines is the opposite, and the valve is opened. This means that hydraulic fluid (usually oil) flows
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Figure 6.23: Scketch of the working principle of a direct spring loaded hydraulic piston pressure relief valve.

through the groove formed somewhere in the middle of the cylinder. The flow direction is marked by the red
arrows in Fig. 6.23. The cylindrical outflow area is depicted by the vertical dashed blue lines and labelled by
Aft(x). The dependence on the displacement x emphasizes that the cross-flow area depends on the system
pressure ∆p, see also Eq. (6.37). Thus, the volume flow rate Qprv through the pressure relief valve increases
with ∆p not only by the larger pressure difference but because of the increasing cross-section as well. The
cross-section Aft increases up to a limit point with x. If the displacement reaches xmax, the red edge of the
spool moves beyond the upper limit of the groove, and the cross-section is fixed at Amaxft (solid blue lines in
Fig. 6.23). In this situation, the volume flow rate of the pressure relief valve Qprv can be increased only by
the increase of the pressure difference ∆p. In summary, three different stages can be defined to determine
the general mathematical form of the cross-section Aft(x):

Aft(x) =


0 for x < 0,

Dπx = Dπ

(
AD∆p

s
− x0

)
for 0 < x < xmax,

Dπxmax for x > xmax.

(6.39)

Obsere that for the case 0 < x < xmax, Eq. (6.37) is employed.

The main task now is to determine the characteristic curve of the pressure relief valve, which is the relation-
ship of the volume flow rate Qprv and the pressure difference ∆p. From the Bernoulli equation, assuming
ideal fluid flow (without losses), the theoretical velocity through a cross-section A having a pressure difference
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∆p between its two sides is

vth =

√
2∆p

ρ
, (6.40)

where ρ is the density of the working fluid. The theoretical volume flow rate is simply

Qth = Avth = A

√
2∆p

ρ
. (6.41)

In reality, the fluid flow is far from ideal; thus, the equation for the flow rate can be written as

Qth = CdA

√
2∆p

ρ
, (6.42)

where Cd a flow factor usually determined empirically. So far, vth, Qth and A are general notations of the
velocity, volume flow rate and cross-section, respectively. Specifically, in case of the pressure relief valve, the
general function of the volume flow rate Qprv(∆p) can be written as

Qprv(∆p) = CdAft(x)

√
2∆p

ρ
, (6.43)

which is a piecewise smooth function according to the formulae in equation Eq. (6.39) for the corss-section
Aft(x):

Qprv(∆p) =


0 for x < 0,

CdDπ

(
AD∆p

s
− x0

)√
2∆p

ρ
for 0 < x < xmax,

CdDπx
max

√
2∆p

ρ
for x > xmax.

(6.44)

Note that in the middle range, we have

Qprv(∆p) = CdDπ
AD
s

(
∆p− sx0

AD

)√
2∆p

ρ
= C1 (∆p−∆pset)

√
∆p = C1

(
∆p3/2 −∆pset∆p

1/2
)
, (6.45)

where the factor C1 accumulates all the constants presented in the equation. Equation (6.45) has two roots:
∆p = 0 and ∆p = ∆pset (comparing Eqs. (6.37) and (6.38), in this case x = 0). When ∆p > ∆pset, the
dominating term is ∆p3/2. Similarly, the last range in Eq. (6.44) is

Qprv(∆p) = C2

√
∆p = C2∆p1/2, (6.46)

which has a single root at ∆p = 0, and C2 again accumulates all the constants in the equation.

The left panel of Fig. 6.24 shows the “assembling” of the effective characteristic curve (Qprv −∆p diagram)
of a pressure relief valve, which is composed by segments obtained from the general expression of Eq.(6.44).
If the system pressure ∆p < ∆pset, the pressure relief valve is closed, and the volume flow rate is zero
Qprv = 0, see the red horizontal line in the left-hand side of Fig. 6.24. Keep in mind again that the limit case
∆p = ∆pset corresponds to the zero displacement x = 0 (the coincidence of the two red horizontal lines in
Fig. 6.23). When the system pressure is greater than the set pressure (∆p > ∆pset), the pressure relief valve
is open, and the released volume flow rate explicitly depends on the system pressure ∆p and implicitly on the
displacement x. The two functions of the last two ranges in Eq. (6.44) is represented by the black solid curves
in the left-hand side of Fig. 6.24; their equations are also highlighted in the diagram. Although the boundary
between the validity limit of the two functions is known to be xmax, it is not known explicitly in terms of
the system pressure ∆p; however, it appears as a crossing of the two black curves. Between the points of
∆pset and the crossing, the middle function in Eq. (6.44) is valid (range 0 < x < xmax). The corresponding
segment is highlighted by red. Above the crossing (maximum displacement xmax), the pressure relief valve
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Figure 6.24: A typical characteristic curve of a spring-loaded pressure relief valve. Left: the volume flow rate
Qprv as a function of the pressure difference ∆p. The theoretical (black) curves are also depicted. Right:
the pressure difference ∆p as a function of the flow rate Qprv.

operates along the function presented by the last expression in Eq. (6.44). This part of the curve is coloured
by red as well. In summary, the effective characteristic curve of a pressure relief valve is composed of three
segments connected continuously (but not smoothly) depending on the displacement x of the spool.

The usual way of plotting the characteristic curve (also in the catalogue) is the inverse of the Qprv(∆p)
function. It is shown in the right-hand side of Fig. 6.24. The volume flow rate at the maximum displacement
xmax (at the break of the characteristic curve) is called the nominal flow rate Qnom. This is the maximum
possible flow rate the pressure relief valve can drain away without reaching the maximum displacement
xmax. The range between Qprv = 0 and Qprv = Qnom is called normal operation; whereas, the operation
with Qprv > Qnom is called overload. The optimal case in the normal operation would be the absolute
horizontal line of the characteristic curve. That is, in case of opening, the pressure relief valve prevents
the increase the system pressure above ∆pset. However, this condition cannot be satisfied as the increasing
flow rate need bigger pressure difference as a driving force. The reason for the slight increase is due to the
increasing cross-section of the fluid flow. Thus, there will always be a small overshoot above ∆pset. The
largest of such an overshoot in the normal operation range (at xmax) is called static error ∆pst depicted also
in the right-hand side of Fig. 6.24. Note that Fig. 6.24 do not present a real characteristic curve, it serves
only demonstration purposes. In reality, the static error very small, it is about ∆pst ≈ (0.01 . . . 0.1)∆pset.

Figure 6.25: Dynamic error of a direct spring-loaded hydraulic pressure relief valve (PRV) in case of a quick
opening.

Large error (deviation from the ∆pset) can occur during the transient dynamics of the valve body or spool of a
pressure relief valve. In case of a sudden increase of the system pressure ∆p above the threshold value ∆pset,
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the pressure relief valve has to open quickly and release as much flow rate as possible to normalize or prevent
the further increase of the system pressure ∆p. However, the opening cannot happen infinitely fast (that
would need infinitely large force); consequently, the valve body or the spool has its own dynamics governed
by its mass, the spring characteristics and the system pressure. In reality, when the valve body is accelerated
to a certain velocity, it cannot be stoped at the required position (due to its inertia) and the opening
(displacement) increases further. This will cause a decrease in the system pressure as the displacement and
the cross-section of the outflow is bigger than necessary (in steady-state operation). Due to the drop in
the system pressure, the pressure relief valve starts to close, and an overshoot in the displacement happens
again but in the opposite (negative) direction. The result is a temporary increase in the system pressure,
and the cycle repeats again. Hopefully, these oscillations decay in time, e.g., due to the viscous forces of
the hydraulic fluid. The discussion of the exact dynamics and the governing equations are beyond the scope
of this subject; however, it is important to keep in mind the phenomenon. For demonstration purposes, a
typical system pressure evolution in time is depicted in Fig. 6.25 of a quick opening. The maximum overshoot
in the system pressure is called dynamic error ∆pdyn that can be much higher than the static error ∆pst
(even 2 or 3 times larger). It is worth noting that for certain configurations, the amplitude of the oscillations
can increase. Naturally, the oscillation amplitude has a definite physical constrain when the valve body or
the spool hits the valve seat or the wall of the cylinder. Such an operating condition can cause massive
damage in the pressure relief valve. This scientific area is still actively researched (also by our department
supervised by Csaba Hős) as there is no trivial answer for under what conditions such instabilities arise.

Figure 6.26: Standard symbol of pressure relief valves in block diagrams of hydraulic systems.

The standard symbol of a direct spring-loaded pressure relief valve used in block diagrams of hydraulic
systems is depicted in Fig. 6.26. The arrow at the spring symbol means adjustable pre-compression. The
dashed line indicates that the valve opens by the system pressure against the spring force (opposite side).
Hypothetically, in case of opening, the arrow inside the solid square is aligned with the piping (vertical lines
at the top and the bottom of the square).

Finally, let us discuss how the proper size of a pressure relief valve can be selected. First of all, it is
customary to choose the set (opening) pressure above approximately 20% of the designed system pressure;
namely, ∆pset ≈ 1.2∆p. For the details of the proper determination of the system pressure ∆p, see Sec. 6.5.
Naturally, the construction of the valve has to withstand this pressure. Another factor during the selection
is the nominal flow rate Qnom. In case of a sudden emergency closure of the system, the pressure relief
valve needs to be able to release all the flow rate back to the reservoir produced by the pump. Moreover,
it must be done in the normal operation conditions already explained in the right-hand side of Fig. 6.25.
Mathematically, this means that

Qnom > Qmaxp . (6.47)

6.4.2 Hydraulic aggregate

As already explained in the introduction of Sec. 6.4, due to safety reasons, a hydraulic pump is never used
alone to provide power to a hydraulic system. It is always combined with a pressure relief valve (PRV) to
release a certain amount of flow rate back to the reservoir if the system pressure exceeds a threshold value.
Actually, the pump and a built-in pressure relief valve are inherently used together. Thus, during the design
and/or control process of a hydraulic system, the combined characteristic curve of a pump-PRV unit is taken
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into consideration. The pump and the pressure relief valve are connected in parallel illustrated by the block
diagram in Fig. 6.27.

Figure 6.27: Block diagram of a hydraulic aggregate composed by a pump and a pressure relief valve
connected in parallel.

If the system pressure exceeds the opening pressure (∆p > ∆pset), the pressure relief valve opens and Qprv
amount of flow rate is released back immediately to the reservoir. Therefore, the flow rate observed by the
system Qsys is less than the one produced by the pump:

Qsys = Qp −Qprv. (6.48)

The characteristic curve of the hydraulic aggregate is the system pressure ∆p as a function of the system
flow rate Qsys. The main aim of this section is to compose this characteristic curve from the already known
characteristic curves of the pump and the pressure relief valve.

Figure 6.28: Typical characteristic curves of a hydraulic aggregate with proper nominal flow rate (solid red
curve) and improper nominal flow rate (dashed red curve). The characteristic curve of the pump is denoted
by the blue curve (partially overlapped with the solid red curve). The thin red and blue lines represent
characteristic curves with a lower pump revolution number or with a different pump having lower output
flow rate (the pressure relief valve is the same).
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The “shape” of the characteristic curve of a hydraulic aggregate can be estimated with good confidence by
inspecting Eq. (6.48). If we assume that the pump volume flow rate is nearly constant (nearly independent
from the system pressure ∆p), which is fairly valid, the characteristic curve of the hydraulic aggregate can
be obtained simply by mirroring the characteristic curve of the pressure relief valve to the vertical axis (due
to the negative sign in front of Qprv), and shift it by the nearly constant Qp towards the positive direction
of the volume flow rate.

Such a characteristic curve is presented in Fig. 6.28 by the solid thick red curve. The characteristic curve of
the pump is the solid blue line that coincides with the red curve below the set (opening) pressure ∆pset (the
pressure relief valve is closed, Qprv = 0 and Qsys = Qp), see also the horizontal thin black line. Observe that
the characteristic curve here is slightly inclined because of the volumetric efficiency of the pump. When the
system pressure ∆p increases above the set pressure, the pressure relief valve opens, and the system volume
flow rate starts to decrease according to Eq. (6.48). Thus, the red and blue solid curves separate. The red
curve has only a slightly inclined plateau (according to the discussion in Sec. 6.4.1) meaning that a small
increment in the system pressure results in a significant increment of Qprv and large decrement of Qsys. In
a limit case, if the system pressure is high enough, the system flow rate is Qsys = 0, and Qp = Qprv. This
happens where the solid red curve crosses the vertical axis denoted by the black dot. Here, all the flow rate
produced by the pump flows back to the reservoir immediately through the pressure relief valve.

An example for the distribution of the flow rates at a system pressure of ∆p = ∆p∗ is also shown in Fig. 6.28.
The crossings of the dashed horizontal line with the red and the solid blue curves define the operation
points of the hydraulic aggregate (red dot) and the pump (blue dot), respectively. The magnitudes of the
corresponding flow rates Qsys, Qprv and Qp are highlighted by the arrows in the bottom of the figure.

The characteristic curve of the hydraulic aggregate continues further in the negative regions of the system
flow rate. Although such operation has no practical relevance (the flow rate Qprv is fed both from the pump
and the system side), it is crucial that third part of the characteristic curve, where the system pressure
starts to increase rapidly (compare also with Fig. 6.24), should be in this domain. That is, the nominal flow
rate Qnom have to be large enough to be able to release the maximum possible flow rate of the pump back
to the reservoir. If the pressure relief valve is poorly selected, and the nominal flow rate is too small, the
characteristic curve of the hydraulic aggregate looks like the red dashed curve in Fig. 6.28. In this case, if a
total closure happens, the pressure relief valve cannot keep the system pressure near the set pressure ∆pset,
which can lead to failure.

As a final remark, if the revolution number of the pump decreases (increases), the characteristic curve
of the hydraulic aggregate is shifted towards the negative (positive) direction of the flow rate. Similar
transformation happens if the pump is replaced by another one having a smaller (larger) flow rate (e.g., due
to the smaller geometric volume). Such an example is depicted by the thin red and blue curves in Fig. 6.24.
The main reason is the shift of the characteristic curve of the pump with changing revolution number, see
again Fig. 6.8 and the discussion in Sec. 6.1.2.

6.4.3 Pilot operated hydraulic PRVs

One of the main disadvantages of direct spring-loaded pressure relief valves is when the (nominal) volume
flow rate increases, the static error ∆pst can increase to an unacceptable level. This behaviour can be clearly
seen in the right-hand side of Fig. 6.24 in the increasing nature of the characteristic curve of the valve in the
normal operating regime. The main reason is that the displacement x (“amount” of opening) depends on
the system pressure itself, see the middle range in Eq. (6.44) repeated here:

Qprv = CdDπ

(
AD∆p

s
− x0

)
︸ ︷︷ ︸

x

√
2∆p

ρ
= CdDπ

AD
s

(
∆p− sx0

AD︸︷︷︸
∆pset

)√
2∆p

ρ
. (6.49)

That is, in order to increase the volume flow rate Qprv, it is inevitable to increase the system pressure ∆p
(thus the static error ∆pst) as well. The technical difficulty is how to increase the flow rate Qprv for the
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same level of ∆p without altering the set pressure ∆pset. A natural option is to increase the diameter of the
cylinder D that will increase the cross-section of the outflow in general, which will decrease the static error
of the pressure relief valve. However, as the set pressure

∆pset =
sx0

AD
=

4sx0

D2π
(6.50)

depends also on the diameter D, it must be corrected either by the spring constant s or the pre-compression
x0.

Let us investigate the dependence of the static error ∆pst on the variation of the diameter of the cylinder
D. From the right-hand side of Fig. 6.24, one can conclude that the bigger the solpe

dQprv
d∆p

=
d

d∆p

(
CdDπ

D2π

4s

√
2

ρ
∆p3/2

)
∝ D3

s

√
∆p (6.51)

of the characteristic curve in the normal operation, the larger the resulted static error ∆pst. That is, we can
write:

∆pst ∝
dQprv
d∆p

∝ D3

s
(6.52)

when the system pressure ∆p is kept at the same level. Adjusting the set pressure via the spring constant,
which is proportional to the second power of the diameter (s ∝ D2) according to Eq. (6.50), the static error
is proportional to the first power of the diameter D:

∆pst ∝
dQprv
d∆p

∝ D3

s
∝ D. (6.53)

In contrast, adjusting the set pressure via the pre-compression x0, the static error is proportional to the
third order of the diameter D:

∆pst ∝
dQprv
d∆p

∝ D3

s
∝ D3, (6.54)

since the precompression x0 ∝ D2, see again Eq. (6.50), does not appear in Eq (6.52).

In summary, the magnitude of the static error can be decreased by increasing the diameter of the cylinder
D, which increases the cross-section of the outflow. In this case, the set pressure must be adjusted via
the spring constant s or the pre-compression x0. In both cases, adjustment by s or x0, the static error is
proportional to the first and third power of D, respectively. That is, the magnitude of the static error can
only be softened, but cannot be eliminated by varying D. Moreover, the adjustment by s is more effective
compared to the adjustment by x0.

An efficient solution for the above-described problem is the usage of a pilot operated pressure relief valve.
The sketch of a pilot operated valve is shown in Fig. 6.23. Its operation principle is discussed in details in
the rest of this section. The main part of the construct is the cylinder, the spool positioned by a soft spring
(low value of the spring constant), and the pilot having a hard spring (large spring constant) and opened
via an orifice. First of all, let us assume that the pilot is closed. In this case, the pressure is the same in
the upper, middle, and the lower part of the spool since all these three chambers are connected to the same
system pressure. Thus, the net force acting on the spool is determined by the soft spring alone. Even if the
spring is very soft, it can ensure the closure of the pressure relief valve by the spool.

The critical setup of the device is the spring constant of the hard spring and its pre-compression. These
quantities determine the set pressure ∆pset of the pressure relief valve. That is, the pressure relief valve
opens when the pilot opens. Now imagine that the pilot is opened due to the increasing system pressure ∆p.
In this case, the pressure is dropped in the chamber above the spool (the pressure is “relieved” from this
chamber). Due to the fixed orifice (acts as a resistance) in the pipe connected to this chamber, the pressure
cannot recover fast by the pump. Therefore, there is an imbalance between the upper and lower part of
the spool resulted in its large displacement. Keep in mind that the soft spring connected to the spool can
compensate only a small pressure difference. In this way, large displacement (significant flow rate Qprv) can
be achieved even if the system pressure ∆p is only slightly above the set pressure ∆pset. This feature makes
the pilot-operated pressure relief valves a viable option if the static error must definitely be kept within a
low level.
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Figure 6.29: Scketch of the working principle of a pilot operated pressure relief valve.

6.5 Sizing examples of simple hydraulic systems

In the previous sections, the basic components (e.g., pumps, motors, pressure relief valve and hydraulic
aggregate) of hydraulic systems and their characteristic curves are discussed in details. In the present
section, the already acquired knowledge is put together, and the fundamentals of complex hydraulic systems
are examined. Essentially, all-hydraulic circuits are the same regardless of the application. There are six
basic components required for setting up a hydraulic system, which are as follows. Reservoir(s) to hold the
liquid (usually hydraulic oil). Pump(s) to force the liquid through the system. Electric motor(s) or other
power source(s) (e.g., diesel engine) to drive the pump(s). Valves to control the liquid direction, pressure
and flow rate. Actuator(s) to convert the energy of the liquid into mechanical force or torque, to do useful
work. Actuators can either be cylinders that provide linear motion or motors that provide rotary motion.
Finally, piping to convey the liquid from one location to another is also necessary. Figure 6.30 shows a simple
(left) and a more complex (right) examples of real hydraulic applications (this figure serves as demonstration
purposes of the possible complexities, and the details are not important here).

Using hydraulic systems have many advantages that make them suitable in a large variety of applications.
For example, hydraulic systems can be used in environments involving dirt and underwater. A hydraulic
motor can be stopped under heavy load without damage (in contrast, e.g., to electric motors). High torque
can be generated with small size, which is independent of the flow rate (velocity or angular velocity). Last
but not least, such a solution allows a fast change of velocity or revolution number or even the direction of
the linear motion or rotation.

Due to the precise and fast response, hydraulic systems are widely used in many industrial projects: plastic
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Figure 6.30: Two typical examples of real hydraulic applications.

processing machinery, steel making and primary metal extraction applications, automated production lines
or machine tool industry, to name a few. In mobile hydraulics, it is used in building and construction
equipment like cranes, excavators, backhoe or earth moving equipment. The most important applications in
the automobile industry are the power steering and brake systems. Hydraulics plays a vital role in marine
applications, e.g., to maintain the stability and control of ships. As a final example, hydraulic fracturing is
one of the advanced mining technology used for extracting unused gases/oils beneath the earth surface.

In the following sections, the basic process of the sizing of simple hydraulic systems is introduced. That
is, how the hydraulic components for a given task (linear or rotary motion) can be chosen, and how the
operation of the system can be controlled/ragulated.

6.5.1 A hydraulic system with hydraulic motor

Let us consider a hydraulic system where a hydraulic aggregate drives a hydraulic motor. A hydraulic motor
is a mechanical actuator that converts hydraulic pressure and flow rate into torque and angular displacement
(rotation). Conceptually, a hydraulic motor should be interchangeable with a hydraulic pump because it
performs the opposite function - similar to the way a DC electric motor is theoretically interchangeable with
a DC electrical generator. However, many hydraulic pumps cannot be used as hydraulic motors because
they cannot be back driven. Also, a hydraulic motor is usually designed for working pressure at both sides
of the motor, whereas most hydraulic pumps rely on low pressure provided from the reservoir at the input
side and would leak fluid when abused as a motor.

The block diagram of the simplest such a hydraulic system is presented in Fig. 6.31. The heart of the system
is the hydraulic aggregate composed by a pump and a pressure relief valve, see also Sec. 6.4 for details, which
provides the volume flow rate Q and the pressure difference ∆p to the system. The opening pressure of
the pressure relief valve ∆pset should be higher than the operating pressure difference of the system ∆p.
The pump is usually driven by an electric motor or a diesel engine with torque Me = Mp and revolution
number ne = np. Here the subscripts e and p means electric motor and pump, respectively. The pump
has a geometric volume Vg,p. The hydraulic power is transferred to the hydraulic motor through the piping
depicted by the black lines in Fig. 6.31. The fluid medium of energy transmission is usually hydraulic oil
stored in a reservoir. The driven hydraulic motor by the flow rate Q and pressure difference ∆p provides
revolution number nm and torque Mm, respectively. The subscript m stands for hydraulic motor. The
quantities nm and Mm are defined by the specific task have to be performed; that is, these are the basic
sizing parameters as “input” of a given problem.

As a specific example, let us consider a task where a machine have to be operated with a revolution number
of nm = 1500 rpm by a hydraulic motor. To maintain the rotation, a torque of Mm = 100 Nm is required.
The first step is to make an initial guess for the system pressure of the underlying hydraulic system; for
instance, let ∆p∗ = 200 bar (later, it can be adjusted if necessary). According to Eq. (6.9) in Sec. 6.1.2, the
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Figure 6.31: Block diagram of the simplest hydraulic system with a single hydraulic motor driven by a single
hydraulic aggregate.

required geometric volume of the hydraulic motor can be estimated:

V ∗g,m =
2πMm

∆p∗
ηv,m
ηhm,m

= 3.142 · 10−5 m3 = 31.4 cm3, (6.55)

where ηv,m = 1 and ηhm,m = 1 are the volumetric and hydromechanical efficiency, respectively. For simplicity,
they considered unity in this specific example (no losses). For simple hydraulic devices, the geometric volume
(sometimes called displacement in catalogues) is fixed; and for a family of products, there is a specific size
series. It is to be stressed that there are products with adjustable geometric volume; however, these devices
are much more expensive due to their complicated constructions. Using a Bosch Rexroth external gear motor
from the AZMG series (fixed displacement to reduce costs), the closest geometric volume is

Vg,m = 32 cm3. (6.56)

The system pressure difference has to be adjusted according to the real geometric volume:

∆p =
2πMm

Vg,m

ηv,m
ηhm,m

= 196.35 bar. (6.57)

The maximum operating pressure for the selected hydraulic motor is pmax = 250 bar that is much higher than
our operation pressure p = ∆p+ p0. Therefore, no additional adjustment of the system pressure is needed.
If the value of ∆p had been higher than pmax, the geometric volume should be recalculated preferably with
a lower initial guess of the system pressure. Parenthetically, the pressure difference can be calculated as
∆p = p − p0, where p is the absolute system pressure (at the inlet of the hydraulic motor) and p0 is the
ambient pressure (at the outlet of the hydraulic motor). Since p0 ≈ 1 bar (the reservoir is usually open to the
environment) and p � p0, the pressure difference is ∆p ≈ p. In addition, the maximum revolution number
of the hydraulic motor is 2800 rpm; thus, the device meets the requirements.

The volume flow rate necessary to drive the motor at a revolution number of nm = 1500 rpm is

Qr =
Vg,mnm
ηv,m

= 8 · 10−4 m3

s
= 48

dm3

min
= 48

l

min
. (6.58)

The next task in the sizing is the proper selection of a pump that can provide the required flow rate Qr.
Assume that the electric motor that drives the pump has a revolution number of ne = np = 3000 rpm. Keep
in mind that revolution numbers of the available electric motors can be selected from a limited number of
standard values (unless an expensive frequency converter is applied). The geometric volume of the hydraulic
pump must be greater than

V ming,p =
Qr

npηv,p
= 1.6 · 10−5 m3 = 16 cm3. (6.59)
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Due to safety reasons and the always presented volumetric efficiency (considered ηv,p = 1 here for simplicity),
the actual geometric volume must definitely be bigger than the value of V ming,p . Using a Bosch Rexroth external
gear pump from the AZPG series, a pump with a geometric volume of

Vg,p = 22 cm3 (6.60)

is selected. The maximum revolution number is 3000 rpm for this geometric volume; thus, the pump meets
the requirements as well. Observe that due to the larger geometric volume than the required, the actual
volume flow rate the pump provides is

Qp = Vg,pnpηv,p = 66
dm3

min
= 66

l

min
, (6.61)

which is much larger than Qr = 48 l/min needs for the hydraulic motor. Therefore, a suitable control
technique has to be employed to reduce the volume flow rate passing through the hydraulic motor, for
details see Sec. 6.5.3.

The torque needs to drive the pump is approximately

Me = Mp =
∆pVg,p

2π

ηv,p
ηhm,p

= 50.9 Nm. (6.62)

The hydromechanical efficiency of the pump is also considered unity (ηhm,p = 1). Based on the values of ne
and Me, a suitable electric motor can also be selected. This is beyond the scope of the present investigation.
Keep in mind, however, that the torque the electric motor can provide must be somewhat greater than the
minimum required Me (for safety reasons). The final task is to set the opening pressure of the pressure relief
valve of the hydraulic aggregate. Let it be 20% above the system pressure ∆p to ensure robust operation:
∆pset ≈ 240 bar.

6.5.2 A hydraulic system with cylinder

The second major application of hydraulic systems when a hydraulic aggregate drives a hydraulic cylinder.
The block diagram of such a configuration is depicted in Fig. 6.32, which is similar to that of shown in
Fig. 6.31. The only difference is the replacement of the hydraulic motor with a cylinder. A hydraulic
cylinder (also called a linear hydraulic motor) is a mechanical actuator that is used to give a unidirectional
force through a unidirectional stroke. It consists of a cylinder barrel, in which a piston connected to a piston
rod moves back and forth. The barrel is closed on one end by the bottom of the cylinder (also called the
cap) and the other end by the cylinder head (also called the gland) where the piston rod comes out of the
cylinder.

The direction of the displacement of the cylinder is managed by a 4-way, 3 position direction valve. Port P
is the supply (system pressure), port R is the return to the reservoir, A and B are general-purpose system
ports. The centre is the closed position where both system ports are closed, and the supply port is connected
to the return port; that is, this is an idle operation where the position of the piston is fixed (even if there
is heavy load F on the piston rod) due to the incompressibility of the hydraulic oil. If the direction valve
switched upward, the supply port P and the system port B are connected, and the piston of the cylinder
moves upward as well. Meanwhile, the return port R is connected to the system port A; thus, the hydraulic
oil can be released to the reservoir from the upper part of the cylinder allowing the displacement of the
piston. In contrast, if the direction valve switched downward, the supply port P is connected to the system
port A and the hydraulic aggregate drives the piston in the downward direction. Observe that in this case,
the return port R is connected to the system port B releasing the hydraulic oil back to the reservoir from the
lower part of the hydraulic cylinder. Strictly speaking, a direction valve is necessary to control the position
of the piston in the cylinder.

Let us continue the discussion with a specific example. Consider a weight of m = 5 t that the cylinder have
to elevate with a speed of v = 0.5 m/s. The diameter of the piston of the cylinder is D = 63 mm. In this
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Figure 6.32: Block diagram of the simplest hydraulic system with a single hydraulic cylinder driven by a
single hydraulic aggregate.

case, the pressure difference need to elevate the weight is

∆p =
F

A
=

mg

D2π/4
= 157.35 bar, (6.63)

where g = 9.81 m/s2 is gravitational acceleration. The required volume flow rate can be calculated via the
task-specific requirements for the speed v of the elevation:

Qr = Av =
D2π

4
v = 0.0016

m3

s
= 93.5

dm3

min
= 93.5

l

min
. (6.64)

The rest of the sizing procedure is the same as in the case of the previous example. Assuming that the
driving electric motor has a revolution number of ne = np = 1500 rpm, the minimum required geometric
volume of the hydraulic pump is

V ming,p =
Qr

npηv,p
= 6.2 · 10−5 m3 = 62.3 cm3. (6.65)

The volumetric efficiency of the pump is again considered unity (ηv,p = 1). Choosing a Bosch Rexroth
external gear pump from the AZPG series, the closest possible option is 63 cm3. However, for safety reasons
(due to the volumetric efficiencies), the selected geometric volume is

Vg,p = 70 cm3. (6.66)

Again, because of the larger Vg,p that necessary, the actual volume flow rate is

Qp = Vg,pnpηv,p = 0.0018
m3

s
= 105

dm3

min
= 105

l

min
, (6.67)

which must be controlled down to Qr = 93.5 l/min, see Sec. 6.5.3.

The torque needs to drive the pump is approximately

Me = Mp =
∆pVg,p

2π

ηv,p
ηhm,p

= 175.3 Nm, (6.68)

where, as usual, ηhm,p = 1 for simplicity. Again, based on the values of ne and Me, a suitable electric motor
can also be selected. Again, this is beyond the scope of the present investigation, and keep in mind again
that the torque the electric motor can provide must be somewhat higher than the minimum required Me

(for safety reasons). The opening pressure of the pressure relief valve of the hydraulic aggregate is set 20%
above the system pressure ∆p to ensure robust operation: ∆pset ≈ 190 bar.
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6.5.3 Control techniques of hydraulic systems

In Secs.6.5.1 and 6.5.2, it is shown that with basic hydraulic elements, the required flow rate for the hydraulic
motor or the cylinder can rarely be set precisely. Usually, a bigger hydraulic pump is chosen in order to
ensure the needed volume flow rate. However, the difference between the flow rates of the pump Qp and the
required Q = Qm = Qc for the motor or the cylinder must be treated somehow. The simplest technique,
discussed in this section in more details, is to install and adjust a throttle so that a surplus of the flow rate
is released back to the reservoir through the pressure relief valve or a bypass pipe. This “trick” is simple
and cheap, but the losses are usually very high. In many industrial hydraulic applications; however, such an
additional loss plays an insignificant role. For instance, in cases where the hydraulic motor/cylinder used
only a few times in a day for few minutes/seconds (e.g., in a car repair workshop to elevate cars before
service).

If the overall efficiency of the hydraulic system is important, more sophisticated control techniques are
available. Naturally, these solutions are much more expensive. One option is to choose an electric motor
with a frequency converter and regulate the revolution number ne = np of the electric motor and the pump.
In this way, the flow rate of the pump can be set precisely. Another option is to select a pump or hydraulic
motor with variable displacement (variable geometric volume Vg,p and/or Vg,m). By changing the geometric
volume, the produced (pump) or required (motor) volume flow rate can be adjusted to the needs. Such
devices have a complex internal structure making them very expensive. Note that the variable geometric
volume cannot be applied to hydraulic cylinders. The aforementioned sophisticated techniques are beyond
the scope of the present topic.

Throttle valve in parallel connection

The first control technique discussed in this section is the application of a throttle connected in parallel to
the hydraulic aggregate and to the hydraulic motor, see the block diagram in Fig. 6.33. If the throttle is
totally open, all the flow rate produced by the pump flows back to the reservoir through the throttle as this
is the route with the least resistance. Therefore, the volume flow rate of the pump and the throttle is equal
(Qp = Qth). In contrast, when the throttle is completely closed, all the flow rate produced by the pump is
delivered to the hydraulic motor: Qp = Qm. In any other intermediate cases, the volume flow rate produced
by the pump is distributed between the throttle and the motor; namely, Qp = Qth +Qm. The main idea is
to set the opening of the throttle so that the volume flow rate of the motor becomes precisely the required
one (Qm = Qr), and the surplus (Qth = Qp −Qr) flows down through the throttle directly to the reservoir.

Figure 6.33: Block diagram of the control of a hydraulic system with a throttle connected in parallel.

In order to give an insight how much power is lost at the throttle, let us represent the control mechanism in
a (∆p,Q) diagram shown in Fig. 6.34. The calculated values of the different quantities are also depicted for
the case discussed in Sec. 6.5.1. First of all, the thick red curve is the characteristic curve of the hydraulic
aggregate composed by a nearly vertical (pump) and horizontal (pressure relief valve) lines, for details the
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reader is referred to Sec. 6.4. Since the operating system pressure ∆p = 196.35 bar is below the opening
pressure of the pressure relief valve ∆pset = 240 bar, the operation point of the hydraulic aggregate (black
dot) lies on the vertical part of the red curve. Therefore, this is the operation point of the pump as well.
Keep in mind that the pressure difference ∆p is identical for the pump, motor and throttle, see also Fig. 6.33.
If the throttle is properly tuned (for instance by hand until the required revolution number of the motor is
achieved), the volume flow rate of the motor must be

Qm = Qr = 48
l

min
, (6.69)

and the rest of the flow rate produced by the pump is flown back to the reservoir through the throttle:

Qth = Qp −Qm = 66
l

min
− 48

l

min
= 18

l

min
. (6.70)

Keep in mind also, that due to the slightly inclined characteristic curve of the pump (the nearly vertical
part of the red curve in Fig. 6.34), the actual flow rate of the pump can be a slightly bit smaller than the
theoretically calculated 66 l/min in Sec. 6.5.1. However, this causes no safety issue as the pump is oversized,
and it provides a good estimates for the energetic calculations.

Figure 6.34: Energetic consideration of the control of a hydraulic system with a parallel throttle.

As the hydraulic power is the multiplication of the pressure difference ∆p and the volume flow rate Q, the
power dissipated at the throttle Pth and the useful power that “arrives” to the motor Pu can be represented
as a rectangular area in Fig. 6.33. Precisely, the useful power is

Pu = Qm∆p = 8 · 10−4 m3

s
· 196.35 · 105 Pa = 15708 W = 15.7 kW, (6.71)

the power loss at the throttle is

Pth = Qth∆p = 3 · 10−4 m3

s
· 196.35 · 105 Pa = 5890 W = 5.9 kW, (6.72)

and finally, the total input power introduced by the pump is

Pi = Pp = Qp∆p = (Qm +Qth)∆p = Pu + Pth = 21599 W = 21.6 kW. (6.73)

Observe that in this control technique, 27.3% of the total input power is dissipated at the throttle. In the
next subsection, a different (but similarly simple) technique is introduced and compared its efficiency with
the above-described method.
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Throttle valve in series connection

The second control technique discussed in this section is the application of a throttle connected in series to
the hydraulic aggregate and the hydraulic motor, see the block diagram in Fig. 6.35. If the throttle is totally
open, all the flow rate produced by the pump flows through the hydraulic motor (as if there were no throttle
installed). In this case, the volume flow rate of the pump and the hydraulic motor is equal, which is higher
then the required (Qp = Qm > Qr). During an initial range of the closure of the throttle, no change in
the flow rate is observed (up to a specific closure). Only the pressure difference the pump has to produce
increases, since it is the sum of the pressure drop at the throttle ∆pth and at the hydraulic motor ∆pm:

∆pp = ∆pth + ∆pm. (6.74)

If the throttle closed enough, the pressure difference of the pump reaches the opening pressure of the pressure
relief valve; that is, ∆pp = ∆pset. By closing the throttle further, the pressure relief valve opens even more,
and an increasing amount of flow rate Qprv is released back to the reservoir bypassing the hydraulic motor.
Due to the conservation of mass, the flow rate of the pump is

Qp = Qprv +Qm, (6.75)

meaning that a decreased amount of flow rate passing through the hydraulic motor (decreased by Qprv).
When the throttle is totally closed, the pressure relief valve is totally open, and all the flow rate flow through
the pressure relief valve (Qp = Qprv, Qm = 0). The main aim in this control technique is to close the
throttle so much that the flow rate of the motor becomes the required: Qm = Qr. For this, the flow rate
released back to the reservoir through the pressure relief valve is Qprv = Qp−Qr. Again, the precise closure
of the throttle is hard to determined by paper and pencil; it is set usually by continuously monitoring the
revolution number of the motor, and stop the closing if the required revolution number (proportional to the
flow rate) is reached.

Figure 6.35: Block diagram of the control of a hydraulic system with a serially connected throttle.

Similarly, as in case of the control technique of the parallel throttle, represent the control mechanism in
a (∆p,Q) diagram shown in Fig. 6.36. Again, the values of the quantities calculated in Sec. 6.5.1 are also
depicted. The characteristic curve of the hydraulic aggregate (solid red curve) is the same as in the case
of Fig. 6.34. The extension of the characteristic curve of the pump is depicted by the red dashed line. The
throttle has to be closed so much that the flow rate of the hydraulic aggregate, which flows through the
throttle and the hydraulic motor as well, must be

Qm = Qth = Qr = 48
l

min
. (6.76)

Therefore, the operating point of the hydraulic aggregate (red dot) must lie on the red curve at the required
flow rate of 48 l/min. At this point, there is an elevated pressure difference close to the opening pressure of
the pressure relief valve. As the characteristic curve of the pressure relief valve (nearly horizontal line) is
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slightly inclined, the “working” pressure difference is slightly below the opening pressure ∆pset. However,
this difference is usually marginal, and for simplicity, we assume that the working pressure difference of the
hydraulic aggregate and the pump is equal to the opening pressure of the pressure relief valve:

∆pp = ∆pha = ∆pset ≈ 240, bar, (6.77)

where the subscript ha stands for hydraulic aggregate. The pressure difference produced by the pump serves
to satisfy the need of the pressure drop at the hydraulic motor and the pressure loss at the throttle, see
Eq. (6.74). The pressure drop at the motor is ∆pm = 196.35 bar need to produce the required torque Mm

for the rotation. Thus, the pressure loss at the throttle can be calculated as

∆pth = ∆pset −∆pm ≈ 43.65, bar. (6.78)

The pressure difference ∆pm and the flow rate Qm = Qr determines the operating point of the hydraulic
motor marked by the black cross in Fig. 6.36. The operation point of the pump (back dot) must lie on the
characteristic curve of the pump itself instead of the characteristic curve of the hydraulic aggregate. That is
why the characteristic curve of the pump is extended (see the red dashed line). Observe that the black dot
does not lie on the solid red curve anymore, although the deviation from it is very small. Again, the actual
flow rate of the pump is changing slightly as a function of the pressure difference; thus, it is not exactly equal
to 66 l/min calculated in Sec. 6.5.1. The difference, however, is marginal, and it is a reasonable assumption
to neglect this effect.

Figure 6.36: Energetic consideration of the control of a hydraulic system with a serial throttle.

The hydraulic power can be calculated in a similar way as in case of the previous example; namely, multiply
the pressure difference dropped at a specific device with the corresponding volume flow rate. The hydraulic
power of the motor, pressure relief valve and the throttle is marked by the grey shaded area labelled with
Pm = Pu, Pprv and Pth, respectively, in Fig. 6.36. Numerically, the hydraulic power of the motor that is the
useful power is the same as in the case of the parallel throttle control:

Pu = Qm∆pm = 8 · 10−4 m3

s
· 196.35 · 105 Pa = 15708 W = 15.7 kW. (6.79)

The power loss at the throttle is

Pth = Qth∆pth = 8 · 10−4 m3

s
· 43.65 · 105 Pa = 3492 W = 3.5 kW. (6.80)

Observe how the operating condition of the throttle is different from the parallel technique, which is empha-
sized also by the quite distinct shaded regions for Pth in Figs. 6.34 and 6.36. Note that although the power
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loss is less than in the parallel connection, the hydraulic power at the pressure relief valve is also considered
as a loss (it has no contribution to the useful power):

Pprv = Qprv∆pset = 3 · 10−4 m3

s
· 240 · 105 Pa = 7200 W = 7.2 kW. (6.81)

Therefore, the total power loss is
Pl = Pth + Pprv = 10.7 kW. (6.82)

Finally, the input power introduced by the pump is

Pi = Pp = Qp∆pset = (Qm +Qprv)∆pset = Qm(∆pm + ∆pth) + Pprv

= Pu + Pth + Pprv = 26400 W = 26.4 kW.
(6.83)

In this control technique, 40.5% of the total input power is dissipated at the throttle and the pressure relief
valve; this is much higher than the parallel throttle case (27.3%). The total input power required by the
pump is also higher due to the elevated operation pressure difference from ∆p = 196.35 bar (see also Fig. 6.34)
to ∆pset = 240 bar. One can conclude that the serial throttle technique has more substantial losses as the
hydraulic aggregate works at the opening pressure of the pressure relief valve rather than the designed value
∆p = ∆pm < ∆pset. However, as mentioned previously, using a simple throttle (either serial or parallel) to
regulate the flow rate of the hydraulic motor is useful in situations where the losses play a minor role during
the operation, see the discussion in the introduction of Sec. 6.5.3.

6.6 Problems

Problem 6.6.62

Calculate the hydraulic power of the double-acting piston pump, which delivers water from an open-surface
tank into a closed one with 500[kPa] gauge pressure (i.e. relative pressure) located 50[m] above the suction
tank. Diameter of the piston is D = 120[mm], the stroke is 150[mm] and the driving motor runs at 120[rpm].

Solution:

Qmean = 2×Apiston × s× n = 2× 0.122π
4 × 0.15× 120

60 = 6.78× 10−3[m
3

s ]

∆p = ptank,abs. − p0 + ρgH = ptank,rel. + ρgH = 991[kPa]

P = Q∆p = 6.72[kW ]

Problem 6.6.63

The characteristic curve of a gear pump is Q[dm3/min] = 11.93− 0.0043∆p[bar]. The volumetric efficiency
at 35bar pressure difference is 92%. Find the volume flow rate and the geometric volume! The shaft speed is
80rev/min. How large is the driving torque if the pump efficiency is 85%? (Solution: Q = 11.78 dm3/min,
Vg = 160 cm3, M = 96.5Nm)

Problem 6.6.64

The piston diameter of a hydraulic cylinder is 50mm. An 800kg load is lifted by the piston rod of 20mm
diameter with 12m/min velocity. How large must be the flow rate Q of the gear pump rotating with
n = 960/min speed if its volumetric efficiency is 92%? Find the geometric volume of the pump and the
pressure rise produced by it! Find the power P and the torque M of the driving motor! The pump efficiency
is 74%. Prepare a sketch of the gear pump showing the rotation direction of the shafts, intake and delivery
ports! How large will be P ′, M , Q′ if the rotor speed is n′ = 1440/min? (Solution: Qg = 21.5 dm3/min,
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Vg = 22.4 cm3, ∆p = 47.6 bar, P = 2.12 kW , M = 21.1Nm, P1440 = 3.18 kW , Q1440 = 32.25 dm3/min,
M1440 = 21.1Nm)

Problem 6.6.65

The piston diameter of a vertical hydraulic cylinder is supporting a mass of 700kg. It may not be lowered
faster than 64mm/s. The cylinder diameter is 50mm, the piston rod diameter is 28mm. The pump delivery
curve is Q[liter/min] = 8.6 − 0.0467∆p[bar]. The hydraulic oil of 970kg/m3 density leaves the cylinder
through a throttle valve. The discharge coefficient of this valve is µ = 0.7. Find the valve area at the
maximal opening! Find the maximum of the useful power of the pump!

Solution:

The two areas:

Aring =
π

4
(D2 − d2) = 0.001348 m2

A =
π

4
D2 = 0.001964 m2.

Newton’s law:

A(p0 + ∆pvalve) = Aringp+mg =

Aring(p0 + ∆p) +mg +Apistonp0 = Ap0 +Aring∆p+mg.

Continuity equation for the upper part of the cylinder:

Qpump = Aringv = 0.001347 m2 · 0.064
m

s
= 5.176

dm3

min
.

Pressure from the performance curve of the pump:

∆p =
8.6−Qpump

0.0467
=

8.6− 5.176

0.0467
= 73.3 bar.

Continuity equation for the valve:

Qvalve = Av = 0.001964 m2 · 0.064
m

s
= 7.54

dm3

min
.

Bernoulli’s equation for the valve:

Qvalve = µAvalve

√
2

ρoil
∆pvalve.

Rearranging Newton’s law yields

∆pvalve =
Aring∆p+mg

A
=

0.001348 · 7.33 · 106 + 700 · 9.81

0.001964
= 85.27 bar,

and finally,

Avalve =
Qvalve

µ
√

2
ρoil

∆pvalve
=

0.0001257

0.7 ·
√

2
970 · 85.27 · 105

= 1.354 mm.

The useful power of the pump is

Pp,u = Qpump∆ppump = (8.6− 0.0467∆p)∆p.

The criterion for the local maximum is
dPp,u
d∆p = 8.6 − 2 · 0.0467 · ∆popt = 0 → ∆popt = 92.1 bar. At this

operating point, Qopt = 4.3 1
min , and Pp,u,max = 660 W.



Chapter 7

Hydro- and wind power

Renewable energies are getting ever-increasing attention over the last decades. Worldwide investment in
renewable technologies was 326.3 billion US dollar in 2017 (the investment was peaked at 2017). Interestingly,
China is the biggest investor in this sector, with almost a 50% share. Globally, the predicted number of
jobs is 7.7 million associated with the renewable energy industry. Moreover, the systems are becoming more
efficient and cheaper, and their share in total energy consumption is increasing. For instance, in 2019, more
than two-thirds of worldwide newly installed electricity capacity was renewable.

The increasing attention has many factors. The most and widely known reason is the biggest challenge
mankind has to face: global warming. Still, there are severe debates on how significant is the effect of the
produced greenhouse gases (mostly CO2) by the globalized industry on the climate change, and how to act
with our limited resources at our hand (prevent or adaptation). Another factor that gets less attention is
the fact that the amount of fossil energy carriers are limited. Many researchers say that we are already
passed the tipping point where a massive, long-lasting global economic crisis cannot be avoided due to
energy shortages. Simply, it is not possible to install renewable energy resources fast enough to avoid the
shrinkage of the global economy. The third factor is an energy political question that is also a security issue;
thus, it might be a less-known factor in common people. Fossil energy carriers are in great abundance only
in a few countries, making the economy of the rest of the countries vulnerable. Since renewable energies
are less focused by nature, the dependence can be reduced by investing in such technologies. Naturally, as
we are living in a highly globalized world, unexpected events can significantly change the direction of our
global history. For instance, an unexpected breakthrough of a new technology or the recent outbreak of
the SARS-CoV-2 coronavirus might force us to redesign and develop a more energy-efficient, less vulnerable
global economy.

The discussion about renewable energies are always overheated, and opinions are mostly divided between two
extremes. On the one hand, environmentalist says that renewable energies can cover all of our energy demand,
we need only political will. On the other hand, many scientists claim that purely with renewable energy
sources, the present consumption cannot be fully covered unless it is reduced significantly. Unfortunately,
the arguments in the heated debates in the media are usually lack of numbers but filled with emotions.
However, the question of energy balance between consumption and production is purely scientific; thus, an
exact scientific answer can be given. In the following sections, two renewable energy sources are going to be
discussed related to fluid dynamics: wind turbines and hydrodynamic power plants. Let the numbers speak
for themselves.

7.1 Wind turbines

In Chpt. 4, the operation and behaviour of fans are discussed in details. They can be regarded as machines
transforming electric energy as input to hydrodynamic energy (fluid flow) as output. Wind turbines behave

110
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in exactly the opposite way; they produce electricity from the kinetic energy of winds. Wind turbines consist
of blades connected to a shaft that drives a generator. The whole system is strategically placed to catch the
wind, which will then turn the blades and the shaft. The generator connected to the shaft will now produce
electricity. The quality of the electricity generated from wind turbines is the same as those from other energy
sources.

The size of wind turbines varies widely. The length of the blades is the most significant factor in determining
the amount of electricity a wind turbine can generate. Small wind turbines that can power a single home
may have an electricity generating capacity of 10 kW. The most massive wind turbines in operation have
electricity generating capacities of up to 10 MW, and larger turbines are in development. Large turbines are
often grouped to create wind power plants, or wind farms, that provide power to electricity grids.

7.1.1 Classification of wind turbines

There are two types of wind turbines: vertical axis wind turbines (VAWTs) and horizontal axis wind turbines
(HAWTs). They both have their advantages and disadvantages. Horizontal-axis turbines have (usually three)
blades like airplane propellers, where the rotating axis of the wind turbine is horizontal, or parallel with
the ground, see the left-hand side of Fig. 7.1. The most massive horizontal-axis turbines are as tall as
110 m and have blades more than 30 m long. Taller turbines with longer blades generate more electricity
due to the higher wind speed. Roughly speaking, doubling the height of the wind turbines, their power
increases approximately by 30%. The advantage of HAWTs is their high power; that is, they can extract
more electricity from a given amount of wind compared to VAWTs; because the rotating axis of the blades
is parallel to the wind. Thus, horizontal axis wind turbines dominate the majority of the wind industry. In
extensive wind application, horizontal axis wind turbines are almost all one will ever see. The disadvantage
of the horizontal axis, however, is that it is generally heavier and it does not perform well in turbulent winds.
Moreover, they require an additional yaw control mechanism to turn the blades toward the wind.

Vertical-axis turbines have blades that are attached to the top and the bottom of a vertical rotor; thus,
the rotational axis of the turbine stands vertical or perpendicular to the ground. The most common type
of vertical-axis turbine—the Darrieus wind turbine, named after the French engineer Georges Darrieus who
patented the design in 1931, see the right-hand side of Fig. 7.1. Some versions of the vertical-axis turbine are
30 m tall and 15 m wide. Very few vertical-axis wind turbines are in use today because they do not perform
as well as horizontal-axis turbines. One of the reasons is that for half the rotation time, the blades have to
rotate against the wind. Due to this fact, vertical axis turbines are primarily used in small wind projects
and residential applications. Their advantage in such small scale applications is the ability to be powered by
the wind coming from all 360 degrees, and even some turbines are powered when the wind blows from top
to bottom. Because of this versatility, vertical axis wind turbines are thought to be ideal for installations
where wind conditions are not consistent, or due to public ordinances, the turbine cannot be placed high
enough to benefit from steady wind.

7.1.2 Power and efficiency of horizontal axis wind turbines (HAWTs)

In this section, the generated power and efficiency is discussed in details for horizontal axis wind turbine
(HAWT), since these types used widely in large scale industrial applications. For this purpose, let us consider
a streamtube around the wind turbine shown in Fig. 7.2 as a vertical cross-section. The boundary of the
streamtube consists of sliding streamlines. Sliding means that velocity jump in the tangential direction can
exist by crossing the streamline. For simplicity, let us replace the complex geometry of a wind turbine with
a so-called actuator disc. The fluid (air) enters in the right-hand side of the streamtube (at cross-section A1)
with velocity v1 that is equal to the undisturbed wind speed v∞. That is, at this cross-section, the velocity
inside and outside of the streamtube is equal, see also the velocity distribution depicted by the arrows in
Fig. 7.2. In the streamtube, the fluid velocity slows down: at the cross-section of the actuator disc A2, the
velocity is v2 < v1; and at the cross-section of the outlet A3, the velocity is v3 < v2 < v1. We assume that the
inlet and outlet of the streamtube are relatively far away from the actuator disc; consequently, around the
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Figure 7.1: Typical examples of wind turbines. Left panel: horizontal axis wind turbine (HAWT). Right
panel: Darrieus-type vertical axis wind turbine (VAWT).

streamtube, the pressure is equal to the ambient pressure p0. However, inside the streamtube, the pressure
can change as the wind turbine produces a pressure difference between the two sides of the blades. That is,
the pressure increases from p1 to p2 by crossing the actuator disc.

Figure 7.2: Vertical cross-section of a streamtube around a horizontal axis wind turbine (HAWT). The
actuator disc replaces the complex geometry of the wind turbine.

During the derivation of the useful power and efficiency of the wind turbine, the following assumptions are
made. In a stationary co-ordinate system (compared to the wind turbine), the flow field is stationary. The
fluid is assumed to be incompressible (the density ρ is constant) and frictionless (the viscosity µ = 0). The
gravitational force can be negligible. The axial velocity in a given cross-section is uniform and constant.
Finally, the radial component of the flow velocity is zero.

As a first step, consider two Bernoulli equations. One between cross-sections A1 and A2:

p0 +
ρ

2
v2

1 = p1 +
ρ

2
v2

2 , (7.1)

and another one between cross-sections A2 and A3:

p2 +
ρ

2
v2

2 = p0 +
ρ

2
v2

3 . (7.2)
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Keep in mind that a single Bernoulli equation between cross-sections A1 and A3 cannot be written as the
streamlines are crossed (thus broken) by the blades of the wind turbine. With the help of Eqs. (7.1) and
(7.2), the force acting on the wind turbine can be expressed as

F = (p1 − p2)A2 =
ρ

2
(v2

1 − v2
3)A2 = ρ

v1 + v3

2
(v1 − v3)A2. (7.3)

Now let us seek another equation for the force F . For the complex surface bounded by the red dashed lines
in Fig. 7.2, the macroscopic momentum balance in a general form reads as

∂

∂t

∫
V

(ρv) dV +

∫
A

ρv (v · dA) +

∫
A

pdA =

∫
V

ρgdV. (7.4)

Since the fluid flow is assumed to be stationary, and the effect of gravity is neglected, Eq. (7.4) can be
simplified to ∫

A

ρv (v · dA) +

∫
A

pdA = 0. (7.5)

It is to be stressed, that the surface A in the surface integrals in Eq. (7.5) is composed by the surface of the
stream tube (outer red dashed lines in Fig. 7.2), and the bounding surface of the actuator disc (inner red
dashed lines in Fig. 7.2) as a solid body inside the fluid flow domain. The evaluation of the surface integral
related to the pressure term is quite simple. The integral on the streamtube (outer red dashed line) is zero
as the pressure is uniform with a value of p0 at every point on the corresponding closed surface. The integral
on the complex geometry of the wind turbine represented by the actuator disc (inner red dashed lines) can
be a cumbersome task; however, it is known that the pressure integral around a body yields the net force F
acting on that body (wind turbine here). Thus, Eq. (7.5) becomes∫

A

ρv (v · dA) + F = 0. (7.6)

As the velocity does not change significantly between the two sides of the actuator disc, the surface integral
of the momentum is zero for the inner red dashed line in Fig. 7.2. Moreover, as fluid crosses the streamtube
only at cross-sections A1 and A2 with uniform and constant velocities, the final form of the macroscopic
momentum balance is

−ρv2
1A1 + ρv2

3A3 + F = 0. (7.7)

The technique to integrate the macroscopic momentum balance on a given surface is already discussed in
details in Sec. 5.4.3. With the aid of the conservation of mass (mass flow rate is constant at any given
cross-section)

ṁ = ρv1A1 = ρv2A2 = ρv3A3, (7.8)

the force acting on the wind turbine can be expresse from Eq. 7.7 as

F = ρv2
1A1 − ρv2

3A3 = ρv2A2(v1 − v3). (7.9)

By combinig Eqs. (7.3) and (7.9), the velocity at the actuator disc is

v2 =
v1 + v3

2
, (7.10)

which is the mean value of the inflow v1 and outflow v3 velocities.

The useful power of a wind turbine is a hydraulic power:

Pu = Q∆p =
ṁ

ρ
(p1 − p2) =

ṁ

ρ

F

A2
=
ρv2A2

ρ

F

A2
= v2F, (7.11)

where Q is the volume flow rate. Substituting Eqs. (7.10) and (7.9) into Eq. (7.11), and with some algebraic
manipulation, the usful power becomes

Pu = ρA2v
3
1

(
1− v1 − v3

2v1

)2
v1 − v3

v1
. (7.12)
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As a wind turbine transforms the kinetic energy of the wind into electric energy, the input power can be
written as

Pi =
1

2
ṁv2

1 =
1

2
ρA2v

3
1 , (7.13)

calculating with the undisturbed velocity v1 at the place of the actuator disc. That is, input power is
obtained from the kinetic energy of the wind as if the wind turbine had not been there.

The efficiency of the wind turbine is simply the ratio of the useful and the input power:

η =
Pu
Pi

= 2

(
1− v1 − v3

2v1

)2
v1 − v3

v1
= 4(1− x)2x, (7.14)

where

x =
v1 − v3

2v1
. (7.15)

Interestingly, the efficiency has a global maximum as a function of x that can be obtained by deriving
Eq. (7.14) with respect to x, and find the root(s) of the resulted algebraic equation. The derivative is

∂η

∂x
= 4(1− x)(1− 3x) = 0, (7.16)

whose solutions are x1 = 1 and x2 = 1/3. The frist root x1 is a degenerate solution as it yields v3 = −v2.
Substituting the second root x2 into Eq. (7.14), the theoretical peak efficiency is

ηmax = CmaxP = 4(1− x2)2x2 = 0.593 ≈ 60%. (7.17)

Equation (7.17) is quite expressive, as it states that only slightly more than half of the kinetic energy of
the wind can be converted into hydrodynamics energy. Moreover, this hydrodynamics energy still has to be
converted into electric energy via a generator reducing the overall efficiency further. The theoretical limit
given by Eq. (7.17) is called the Betz-limit. In many textbooks, the efficiency η is referred to as the rotor
power coefficient CP . Substituting the value of x2 into Eq. (7.15), it can be easily seen that at the best
efficiency point, the outflow velocity is

v3 =
v1

3
=
v∞
3
. (7.18)

That is, in order to achieve peak performance, the wind turbine has to be designed (e.g., the profile of the
blades) so that it slows the flow velocity down to 1/3 of the undisturbed velocity v1 = v∞.

For a quick calculation, consider a well-designed wind turbine that can operate near the Betz-limit. Assume
that the diameter of the turbine is D = 20 m, the wind speed is v1 = v∞ = 4 m/s and that the density of
the air is ρ = 1.2 kg/m3. The useful power can be estimated as

Pu = Pi · ηmax =
1

2
ρ
D2π

4
v3
∞ ≈ 7.1 kW. (7.19)

According to one of the reports of the World Energy Council, the average electric power consumption of
a household in some countries in 2010 are as follows. United States: 11698 kWh/year = 1.3 kW, United
Kingdom: 4648 kWh/year = 0.53 kW and China: 1349 kWh/year = 0.15 kW. That is, a single installment of
the wind power plant mentioned above can satisfy approximately the needs of 5.5, 13.5 and 47 households,
respectively. For more detailed calculations and conclusions, the reader is referred to Sec. 7.1.3.

7.1.3 Design aspects and further remarks

The achievable useful power and maximum efficiency of a wind turbine depend on the design. Therefore,
they can be determined only by measurements. By convention, the efficiency η (rotor power coefficient CP )
is usually represented as a function of the tip speed ratio

λ =
Rω

v∞
, (7.20)
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where R is the radius of the turbine wheel, ω is its angular velocity and v∞ is the undisturbed wind speed.
Observe that the term Rω is the circumferential velocity of the tip of the blades. Thus, Eq. (7.20) is the ratio
of the velocity of the fastest point in a blade and the undisturbed flow velocity. For different wind turbine
designs, the characteristic curves are summarized in Fig. 7.3. The Betz-limit is marked by the horizontal
dashed line (ideal CP ). The theoretical power coefficient is shown by the green curve (infinite number of
blades and lossless fluid flow). This curve initiates from the origin, and even with such an ideal case, the
Betz-limit can be reached only above tip speed ratio approximately λ = 6. Naturally, when the wind turbine
stopped (λ = 0), the efficiency is η = CP = 0 regardless of how carefully the wind turbine is designed.
The other colour coded curves are measured characteristic curves of real wind turbine designs. They have a
common feature; namely, there is an optimal tip speed ratio. It can be seen that the most efficient design
is the three-bladed horizontal axis wind turbine, which justifies its exclusive usage in large-scale industrial
projects.

Figure 7.3: Characteristic curves of different horizontal- and vertical axis wind turbines. The horizontal
dashed line is the Betz-limit (CP = 0.593).

As a final remark, let us try to estimate the possible potential of the extensive installation of wind farms.
Since the peak power of a single wind turbine is rather small (see the estimated calculation at the end of
Sec. 7.1.2), a massive number of wind turbines have to be put into operation in order to obtain a significant
impact on the energy management. However, how much percentage of the territory of a country can be used
for wind farms? Try to be realistic and assume 10% that is actually a quite large number but still possible
in theory. The next question is, how much power can be extracted in a unit area? Naturally, it depends on
many factors; for instance, the average wind speed and how tightly the wind turbines are packed. Therefore,
to obtain a good overview, use real data for an estimation: from the Whitelee wind farm near Glasgow in
Scotland, see Fig. 7.4. The site area is 55 km2, the number of wind turbines is 215, and the peak power is
about 539 MW. This means a peak power density of 9.8 W/m2. Naturally, a wind turbine cannot operate
on their peak efficiency all the time. It is reasonable to assume (according to the experience) that a 30%
average load factor can be applied resulted in an approximated power density of 3 W/m2.

Continue the discussion with the United Kingdom as its wind energy potential is considered high. The
population density of the country is approximately 255 head/km2 that translates to 4000 m2/head. Therefore,
the electric power the wind farms can generate to a single person is approximately 1200 W = 30 kWh/day
(taking into account that “only” 10% of the total land is used). In comparison, the used energy of an
averaged driver in the United Kingdom is about 40 kWh/day (the list of assumptions and used data are
omitted here to remained focused). Naturally, not every person are driving in the country; however, if one
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intends to use only electric cars, theoretically, the required power can barely be satisfied by installing wind
turbines on 10% of the landmass. Moreover, many other sectors are having a much bigger CO2 emission than
domestic cars (e.g., heavy industry). In conclusion, there is a tremendous amount of wind power capacity
worldwide; however, our consumption is also massive. The total wind power capacity in 2018 was 591 GW,
which is only 3.2% of the total global energy consumption (18394 GW). Although the estimated peak wind
power potential worldwide is 123 PWh/y = 14031 GW, the low power density (3 W/m2) and the relatively
short lifetime (5 years of offshore and 30 years of onshore wind turbines) will always be the primary limiting
factor of the massive application of wind turbines. Nevertheless, they will play an ever-increasing role in the
future, but the reduction of energy consumption or the exploitation of other renewable energy sources is a
must (see the next section as an example).

Figure 7.4: Whitelee wind farm from air and some of its 215 wind turbines.

7.2 Hydropower plants

Hydropower or water power is power derived from the energy of falling or fast-running water, which may
be harnessed for useful purposes. That is, the potential energy and/or the kinetic energy of the water is
utilised. In ancient times, hydropower from many kinds of watermills has been used as a renewable energy
source for irrigation and the operation of various mechanical devices, such as gristmills, sawmills, textile
mills, trip hammers, dock cranes, domestic lifts, and ore mills. In the late 19th century, hydropower began
to used to produce electricity. The first such a power plant producing alternating current was built on the
Niagara Falls in 1896 by Nikola Tesla and George Westinghouse. Interestingly, the first hydroelectric power
plant in Europe was built in Serbia, also by Nikola Tesla, in 1900. Nowadays, the term hydropower has
been used almost exclusively in conjunction with the modern development of hydroelectric power. Not long
after the turn of the twenty-first century, hydropower development gained a renewed momentum. Between
2000 and 2017, nearly 500 GW in hydropower capacity was added worldwide (mainly across Asia and South
America), representing an increase of 65 %. The growth since 2010 has already outstripped what recorded
in the first decade of the century. Today, hydropower provides about 16 % of the electricity of the world.
According to the International Energy Agency, in order to meet the main energy-related components of the
Sustainable Development Goals, including the below two degrees Celsius commitment of the Paris Agreement,
an estimated 800 GW of additional hydropower will need to be brought online over the next two decades.
Although hydropower is regarded as a clean and renewable energy source, it has several disadvantages as
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well, see Sec. 7.2.1 for details.

7.2.1 Introduction to hydropower plants

The type of hydropower plant suitable to build to a given place depends mainly on three factors. The fist is
the available water flow rate Q and its fluctuation over seasons. The second is the available head H; that is,
the possible static height difference of the water levels between the two sides of the power plant (representing
the potential energy of the system). These two factors depend on the environment: local features of the
landscape and the amount (and steadiness) of rainfall in the area of the drainage basin. With the help of the
estimated values for average Q and H, the theoretical (hydraulic, input) power and the produced electric
(useful) power that can be harnessed from the power plant is

Pth = Pi = QρgH, (7.21)

and
Pel = Pu = ηoPth = ηoQρgH, (7.22)

respectively. Here, ηo is the total/overall efficiency of the instalment. The third factor is the flexibility in
the power output. It depends both on the possibility of the hydropower plant itself and the requirements of
the demand. In many cases, the variations in the demand can be satisfied by using large water reservoirs
with which the peak power can be increased considerably for a limited amount of time.

The traditional type of hydropower plants is based on the installation of a dam that serves the purpose of
elevating the available head H and establishing a reservoir for storing a large amount of water supply. The
schematic drawing of the operation is depicted in the top-left of Fig. 7.5. A dam is constructed across a
river to elevate the water level and offer the fall needed to develop a driving force. The falling water is then
channelled to a turbine wheel at a lower level. The flowing water turns a turbine wheel that is connected
to a generator. The generator has a rotor, which is turned by the turbine. Finally, the turning of the
generator rotor produces electricity. In the top-right panel of Fig. 7.5, the famous Hoover Dam (USA) is
shown constructed between 1931 and 1936 (during the great depression). Its power capacity is 2080 MW that
is not enough to be in the top 50 largest power plant in the world. The two largest hydropower plants are
depicted in the bottom-left (Three Gorges Dam, China, 22500 MW) and bottom-right (Itaipu Dam, border
of Brazil and Paraguay, 14000 MW) panels of Fig. 7.5, respectively. In comparison, the peak power of the
sole nuclear power plant in Hungary (Paks) has 2000 MW capacity.

A special type of hydropower plant is the pumped-storage hydroelectricity or pump-turbine system. The main
purpose of this system is to store energy (as the potential energy of the stored water) in an artificial reservoir
at an elevated height. The storing process takes place usually in a period of low-cost electricity. During the
high demand for electricity, the stored water is released through turbines to produce electric power. The
schematic drawing of the operation is depicted in the left-hand side of Fig. 7.6. If the pumped-storage system
is not connected to a traditional hydropower plant or the turbines does not feed by a river; that is, if the
only aim is to compensate the daily fluctuations in the demand, the power plant is a net energy consumer.
To date, there is no cheap and efficient technology to store a large amount of electric power; therefore, such
systems play an important role to “collect” energies that would be wasted otherwise. For instance, the solar,
wind and other renewable sources; in addition, the excess electricity from continuous base-load sources (e.g.,
coal or nuclear) to be saved for periods of higher demand. Pumped storage is by far the largest-capacity
form of grid energy storage available. As a limitation, the capacity of the artificial reservoir is small, which
can store enough water usually for less than half a day. The main reason is the specialised site required: both
geographical height and water availability are necessary. These areas customarily have outstanding natural
beauty, and therefore there are also social and ecological issues to overcome. The average energy efficiency
of pumped-storage hydropower plants varies between 70%–80%, in some exceptional cases, it can be as high
as 87%. In the right-hand side of Fig. 7.6 the Kinzua Dam is shown from a downriver view together with
the Seneca Pumped Storage Generating Station (upper artificial reservoir). The storage capacity of the
instalment is 3920 MWh with storage of 11.2 h. Its peak power is about 390 MW.

If the landscape of the area does not allow to build a large dam (e.g., due to large flat habitable, agricultural
or industrial regions), low head (below 15 − 5 m) hydropower generation is the only option to produce
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Figure 7.5: Tranditional (dam) hydropower plants. Top-left: schemtic draw of the operation; top-right:
Hoover Dam, USA (2080 MW), bottom-left: Three Gorges Dam, China (22500 MW), bottom-right: Itaipu
Dam, Brazil-Paraguay, (14000 MW).

Figure 7.6: Pumped-storage hydroelectricity or pump-turbine system. Left: schematic draw of the operation;
right: Kinzua Dam with the Seneca Pumped Storage Generating Station (upper artificial reservoir), USA
(3920 MWh, 11.2 h).

electricity, where a little or no water storage is available. Many textbooks also refer to these power plants as
run-of-river hydroelectricity. For the schematic drawing of the operation, see the left-hand side of Fig. 7.7.
In some cases, there is also a small storage reservoir called pondage. A plant without pondage is subject
to seasonal river flows; thus, the plant will operate as an intermittent energy source. Naturally, low head
hydropower plants have much less capacity as the traditional dam-type versions. However, they have many
advantages. For instance, they still can be economically feasible, and like most hydro technologies, the
output is predictable; therefore, it is a reliable renewable resource for electricity generation. In many cases,
low head hydro generation can be added where low head dams and other hydraulic structures already exist
for flood control, irrigation, and water regulation. It requires a smaller impounded area than large hydro
projects and therefore has a less environmental impact and investment costs (smaller structures). It can
greatly help to increase the use of clean power, particularly in remote locations where diesel generation is
currently the primary source of electricity. In the right-hand side of Fig. 7.7, the low-head hydropower plant
at Tiszalök is depicted (Hungary). Its peak power is approximately 11.5 MW with head about 7 m.

As the last example, tidal energy also has the potential for electricity generation, although they are still not
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Figure 7.7: Low head hydropower plants. Left: schematic draw of the operation; right: Tiszalök low-head
hydropower plant, Hungary (11.5 MW peak power, 7 m head).

widely used. Like all the other hydropower sources, electricity generation is more predictable compared to
other renewable energy sources, e.g., wind and sun. Tidal energy has traditionally suffered from relatively
high cost and limited availability of sites with sufficiently high tidal ranges or flow velocities; thus, con-
stricting its total availability. However, many recent technological developments and improvements, both in
design (e.g., dynamic tidal power, tidal lagoons) and turbine technology (e.g., new axial turbines, cross-flow
turbines), indicate that the total availability of tidal power may be much higher than previously assumed
and that economic and environmental costs may be brought down to competitive levels. In Fig. 7.8, the
schematic drawing of a tidal hydropower farm (left) and a real tidal power generator in Northern Ireland
with a capacity of 1.2 MW (right) is depicted.

Figure 7.8: Tidal hydropower plants. Left: schematic draw of a tidal hydropower farm; right: a tidal power
generator in Northern Ireland (1.2 MW).

After summarizing the types and constructions of hydropower plants, let us discuss their advantages and
disadvantages. First of all, hydropower is a renewable energy source like rivers, and lakes typical never
disappear. On the other hand, there are just a few suitable repositories where hydroelectric power plants
could be built and fewer places where such undertakings are beneficial. In addition, hydroelectric power
is a “green” and “clean” energy sources; they do not produce any toxic or greenhouse gases that pollute
the atmosphere. The primary contamination happens when the power plants are being built. Hydroelectric
power is a cost-competitive source of energy even though the upfront building costs can be high. River water
is an infinite and reliable, long-lasting and constant resource, which is not affected by market volatility.
Hydroelectric power plants have an average lifetime of 50–100 years, meaning they are strategic investments
that can support many future generations. They can also be easily upgraded with novel technologies resulting
in considerably lower operating and maintenance costs. The lake that forms behind the dam can be used for
irrigation purposes, and it shields water tables from exhaustion and minimizes our susceptibility to droughts
and floods.

Besides the many advantages mentioned above, hydropower plants have many drawbacks as well. Inter-
ruptions of natural water flow can have a great impact on the river ecosystem and the environment. For
example, some fish species normally migrate when there is food shortage or when the breeding season be-
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gins. The building of dams could cut off their paths, leading to a lack of reproduction of fish deaths. Power
plants can be incredibly expensive to build regardless of its type. They are very costly to construct due to
logistical challenges like topography, laying foundations underwater, and the materials used to build it. The
only upside is that after completion, it will require less maintenance. Countries that harbour rich sources of
hydroelectric power typically build dams across the river to harness the water. While this act is laudable,
it can result in interruption of natural water flow from one specific direction to another. It can trigger off
conflict with other countries. People living in villages and towns that are in the valley to be flooded must
move out. This means that they lose their farms and businesses. In some countries, people are forcibly
removed so that hydropower schemes can go ahead. For example, on completion of the Three Gorges Dam
(bottom-left picture of Fig. 7.5), the reservoir flooded a total area of 632 km2. Last but not least, building
a large dam alters the natural water table level. For example, the Aswan Dam in Egypt has altered the
level of the water table slowly leading to damage of many of its ancient monuments as salts and destructive
minerals are deposited in the stonework from rising damp.

7.2.2 Turbine types and their range of application

The heart of a hydropower plant is the employed turbine that has a significant factor in the achieved overall
efficiency and thus the harnessed electric power from the theoretical one. The type of hydropower turbine
selected for a project is based primarily on the available head H and the flow rate Q of the instalment since
these fundamental quantities determine the flow characteristics across the turbine.

For very high heads (200 m < H < 2000 m) and low flow rates, generally Pelton turbines (left-hand side
of Fig. 7.9) are employed, which belong to the family of impulse turbines. It is invented by Lester Allan
Pelton in the 1870s. The Pelton turbine uses the velocity of the water to move the runner and discharges to
atmospheric pressure. Due to the high head, the Pelton wheel has typically high speed. The water stream
(jet) hits each bucket (paddle) on the runner. There is no suction on the downside of the turbine, and the
water flows out at the bottom of the turbine housing after hitting the runner. A Pelton wheel has one or
more free jets discharging water into an aerated space and impinging on the buckets of a runner, see the
right-hand side of Fig. 7.9. Many earlier variations of impulse turbines existed, but they were less efficient
than the design of Pelton. His paddle geometry was designed so that when the rim ran at half the speed of
the water jet, the water leaves the wheel with very little speed. Thus his design extracts almost all of the
impulse energy of the water leading to a very efficient turbine.

Figure 7.9: Left: a free Pelton wheel (runner), right: a built-in Pelton wheel driven by six water jets.

For moderate heads (50 m < H < 500 m) and low to high flow rates, Francis turbines are good solutions,
see a runner in Fig. 7.10 left. Francis turbines are the first hydraulic turbines with radial inflow. It was
designed by the American scientist James Francis. Francis turbine is a reaction turbine where the major
part of pressure drop occurs in the turbine itself, unlike the impulse turbine where complete pressure drop
takes place up to the entry point. The water flow completely fills the turbine passage during the operation.
Francis turbines are generally installed with a vertical axis. Water enters the turbine through a spiral casing
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(see Fig. 7.10 middle) surrounding the guide vanes (magnified in Fig. 7.10 right). The water loses a part of its
pressure in the volute (spiral casing) to maintain its speed. Then the water passes through the guide vanes
where it is directed to strike the blades on the runner at an optimum angle. As the water flows through
the runner, its pressure and angular momentum reduce. This reduction imparts reaction on the runner and
power is transferred to the turbine shaft.

Figure 7.10: Left: a free Francis wheel (runner), middle: a built-in Francis turbine into a spiral casing, right:
magnified guide vanes.

For very low heads H < 50 m and a wide range of flow rates the optimal choice is the Kaplan turbine or one
of its variant developed by the Austrian professor Viktor Kaplan in 1913. A runner of a Kaplan turbine is
depicted in the left-hand side of Fig. 7.11. Kaplan turbines are also reaction turbine and work similarly as
Francis turbines. In fact, it is evolved from the Francis turbine and often referred to as propeller turbine. It
also has a spiral casing and automatically adjusted propeller blades with automatically adjusted guide vanes
(see Fig. 7.11 right) to achieve efficiency over a wide range of flow and water level. The main difference is
that the water flows axially through the turbine instead of radially. It is capable of working at low head and
high flow rates very efficiently, which is impossible with Francis turbines.

Figure 7.11: Left: a free Kaplan wheel (runner), right: a built-in Kaplan wheel into a spiral casing with
guide vanes (yellow).

The last type of turbines discussed here is the crossflow turbines useful in smaller hydroelectric sites (5 −
100 kW). Sometimes it is known as Banki-Mitchell or Ossberger turbines (depending on the country). These
turbines are useful for a broad range of hydraulic heads (1.75 m < H < 200 m); however, crossflow turbines
are usually chosen for heads below 40 m. Similarly, as the Pelton turbines, they are also impulsed turbines
as they get energy from water by reducing the velocity, while the pressure stays nearly the same. Although
one benefit of these turbines is the less complicated maintenance to keep them working, other turbines are
likely more efficient and useful for large-scale applications. Therefore, it is seldom used in large hydropower
projects. Figure 7.12 summarizes the runner (a cylindrical mechanism composed of blades arranged into a
water wheel shape), the operation principle and an exploded figure of a crossflow turbine instalment in the
left, middle and right panels, respectively.
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Figure 7.12: Left: a free crossflow wheel (runner), middle: operation principle, right: exploded figure of an
instalment.

Figure 7.13 shows the range of application in term of the headH and flow rateQ of the different water turbines
discussed above. It is worth noting that the diagonal turbine (e.g., the Deriaz turbine) is somewhere between
the Francis (radial) and Kaplan (axial) turbines. That is, the flow in a diagonal turbine does not follow
a full axial nor radial direction, but it is a diagonal mixture of the two. Like the Kaplan turbines, they
also have adjustable runner blades and guide vanes. The bulb turbine is a variation of the propeller-type
turbine (Kaplan turbine). In the bulb turbine arrangement, the generator is encapsulated and sealed within a
streamlined watertight steel housing mounted in the centre of the water passageway. Due to the logarithmic
scale of the head H and the flow rate Q, the isolines of the power P ∝ QH are diagonal straight lines with
a negative tangent. Keep in mind that such a chart depends on the manufacturer, the one presented in
Fig. 7.13 is for demonstration purposes only.

Figure 7.13: Application chart of water turbines as a function of the head H and flow rate Q.

The application chart presented in Fig. 7.13 is a “mess” in the sense that clear trends can hard to be
observed. In case of pumps, the specific speed defines the shape of the impellers; thus, it is a suitable
quantity to characterise the types of the pumps, see again Sec. 2.4 and Fig. 6.4 therein. Similarly, a specific
speed can also be defined for water turbines as

nq = n
Q

1/2
opt

H
3/4
opt

, (7.23)

where n is the revolution number in unit of rpm, Qopt (in unit of m3/s) and Hopt (in unit of m) are the
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flow rate and the head at the best efficiency point. The specific speed can be reformulated with the usage
of useful Pu or input power Pi since the flow rate is proportional to Q ∝ Pu/H ∝ Pi/H. In this way, the
following definitions are also used in many textbooks:

nω = ω
P

1/2
u,opt

H
5/4
opt

, (7.24)

ns = n
P

1/2
i,opt

H
5/4
opt

. (7.25)

With the usage of specific speed, the types of the different water turbines in the application chart shows a
very clear trend, see Fig. 7.14. With increasing specific speed, the tendency of the optimal choice of turbine
type is Pelton, Francis and Kaplan. A similar clear tendency is displayed in terms of the head as well.

Figure 7.14: Application chart of water turbines as a function of the specific speed nq.

7.2.3 Characteristic curves of water turbines

The fundamental equation of hydropower turbines as fluid machinery is the Euler equation. Similarly, as
in the case of pumps, the theoretical specific work that can be extracted is possible via the change of the
angular momentum of the fluid flow:

Hth =
c1uu1 − c2uu2

g
, (7.26)

where u1 and u2 are the circumferential velocities of the inlet and outlet points at the blades, respectively.
The absolute velocity components parallel to the circumferential velocities are c1u and c2u. Remember that
the equivalent Euler equation for pumps can be found in Sec. 2.2 as Eq. 2.7. The discharge (outlet) angular
momentum is proportional to c2u; thus, it is preferably zero. Any positive value of c2u is realised as energy
loss at discharge (unextracted energy). In addition, for positive energy production, c1u > c2u is necessary.
For the Francis and Kaplan turbines, the optimal values of c1u is set by the guide vanes, see Figs. 7.10 and
7.11 again. The velocity components in Eq. 7.26 depends primarily on the geometry of the turbine and its
blades; therefore, they can be determined from the velocity triangles, see also Sec. 2.2. In the case of the
three widely used turbine types, they are summarised in Fig. 7.15: Pelton (top-left), Francis (top-right) and
Kaplan (bottom). Observe that in this figure, for the Kaplan turbine, the index of the inlet and outlet are 2
and 3, respectively; however, throughout the text, we shall still use the conventional 1 (inlet) and 2 (outlet)
indices. Note that even though the Pelton turbine is an impulse turbine, the Euler turbine equation is still
valid.

The Euler turbine equation is a good starting point to analyse the performance of a turbine. Nevertheless,
as in the case of pumps, the real characteristic curves can be determined only via measurements due to the
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Figure 7.15: Velocity triangles of the Pelton (top-left), Francis (top-right) and Kaplan (bottom) turbines.

complicated flow conditions inside the runner. It customary to provide the flow rate Q, input hydraulic power
Pi, overall efficiency ηo and sometimes the torque M as a function of the revolution number n as characteristic
curves with constant head H and gate opening GO. For better comparison, quantities are usually specified
to H = 1 (unit head) and D = 1 (unit runner diameter). The main reason is that the velocity triangles
under the working conditions and unit quantities are geometrically similar, and the efficiency of the turbine
remains unaffected. To determine the dimensionless unit flow rate, consider the following proportionality
relationship:

Q = Aref · vref =
D2π

4

√
2gH ∝ D2H1/2, (7.27)

where the fluid flow with reference velocity
√

2gH has the same kinetic energy as the potential energy of
a steady water column with height H. Observe that the constants in the last term of Eq. (7.27) can be
eliminated since between the last two terms there is a proportionality relation. Taking the ratio of the first
and the last terms in Eq. (7.27), the unit flow rate can be defined as

QU = Q11 =
Q

D2H1/2
. (7.28)

In a similar way, the unit revolution number is derived as

u = Dπn ∝ vref =
√

2gH, (7.29)

Dπn ∝ H1/2, (7.30)

nU = n11 =
nD

H1/2
. (7.31)
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Also, the unit input power:

Pi = QρgH ∝ D2H1/2H = D2H3/2, (7.32)

PU = P11 =
Pi

D2H3/2
, (7.33)

where the proportionality relationship Q ∝ D2H1/2 from Eq. 7.27 is exploited. Finally, the unit torque:

M ∝ Pi
ω
∝ Pi

n
∝ D2H3/2

H1/2/D
, (7.34)

MU = M11 =
M

D3H
. (7.35)

It is important to emphasize that if a liquid differs from water (e.g., the flow rate at the final stage of
a process in a chemical application is exploited to produce electricity), the density cannot be omitted as
a constant during the derivations of the unit quantities. The “nature” of the characteristic curves of the
Pelton (left), Kaplan (middle) and Francis (right) turbines are shown in Fig. 7.16 with constant head H and
at different gate opening GO values in percentage.

Figure 7.16: Typical characteristic curves of the Pelton (left), Kaplan (middle) and Francis (right) turbines.

In order to determine the optimal operation conditions (e.g., Hopt or Qopt), for instance, to calculate the
specific speed of the turbine, it is useful to present the constant efficiency isolines in the characteristic curve
diagrams. An example is shown in the top panel of Fig. 7.17, where such a representation is often referred to
as efficiency hill chart. As a local maximum, the best efficiency point can be estimated. The characteristics
of the maximum achievable efficiencies are presented in the bottom panel of Fig. 7.17 for different turbine
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types. Keep in mind that the Deriaz turbine is halfway between the Kaplan and the Francis turbines. From
this diagram, it is sharply visible, that for different specific speeds ns, different turbine types are optimal.
Observe that moving away from the best peak efficiency point, the maximum achievable efficiency decreases
significantly. Since, roughly speaking, the specific speed ns or nq is inversely proportional to the head H (see
Fig. 7.14), optimal selection of the turbines greatly depends on the available head of the hydropower plant.

Figure 7.17: Typical characteristic curves of the Pelton (left), Kaplan (middle) and Francis (right) turbines.

7.2.4 Final remarks

Finally, let us discuss the current state of production and the further potential of hydroelectricity, and
figure out how significant is its impact on global energy production. In 2018, the total installed capacity for
electricity production is about 1260 GW (948.8 Mtoe, 1 Mtoe = 11.63 TWh). Here Mtoe stands for Million
tonnes oil equivalent. In contrast, the total primary energy consumption (oil, natural gas, coal, nuclear
energy, hydroelectricity, other renewables) of the world in 2018 was 18394 GW (13846 Mtoe). This translates
to approximately a 14.6% share of hydroelectricity from the total energy consumption of the world (62.8%
from all renewables). Total global gross hydropower potential is estimated to be approximately 14000 GW,
if one assumes that the potential energy of all the rainfall has been exploited as it runs down to the sea
level. Naturally, such an assumption is a huge overestimate; thus, the technical potential is about 3000 GW,
meaning that 40% of the global energy consumption can be satisfied by hydropower plants in the near future.
Keep in mind, however, that energy hunger of the countries increases as well.

Our conclusion can be more optimistic compared to wind power. The capacity of hydroelectricity is huge, and
our consumption is huge as well; however, hydroelectricity will definitely play an important role worldwide.
Compared to other renewable energy sources as wind and solar panels, the cost of energy production is the
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cheapest. The average cost in USD for 1 kWh electric energy are as follows; hydroelectricity: 0.047, onshore
wind 0.056, offshore wind 0.127, photovoltaic solar 0.085 and concentrating solar 0.185. Also, other factors
have to be taken into account, such as the lifetime (duration of utilisation in years) of the instalments:
offshore wind 5 y, onshore wind 30 y, solar 10−15 y and hydropower 150 y. Thus, hydropower is a long-term
investment with low maintenance cost for more than a century; it needs no rare metals as the photovoltaic
modules and lacks the low power density of wind power. In Fig. 7.18, the theoretical potential is depicted in
the left-hand side, and the planned hydropower projects are summarised in the right-hand side.

Figure 7.18: Theoretical potential of hydropower (left-hand side) and the planned hydropower projects
(right-hand side).

7.3 Problems

Problem 7.3.66

The cross-section of a plant water channel is given. The measured average water depth is h = 2.9 m, the
width of the channel is B = 25 m. The velocity of the water flow is measured at several locations of the cross-
section using a cup-type anemometer. The calculated average velocity is v = 0.4 m/s. The height difference
between the upstream and downstream water depth at the dam is hupstream − hdownstream = 4.5 m. The
efficiency of the turbine is ηturbine = 90 % the efficiency of the generator is ηgenerator = 96 %. The input
power and useful power of the power plant are to be calculated. What is the value of the hydraulic radius?
What type of turbine is suitable for this power plant?

Solution:

� A = hB = 72.5 m2

� Q = Av = 29 m3/s

� H = hupstream − hdownstream = 4.5 m

� P input = QρgH = 1.28 MW

� Puseful = ηturbineηgeneratorP input = 1.106 MW

� Rh = Area
Perimeter = Bh

2h+B
= 2.35 m

Turbine type: Kaplan turbine.

Problem 7.3.67
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The instantaneous efficiency of an existing wind turbine is to be calculated. The measured average wind
speed at the level of the rotor is v1 = 12 m/s. The average speed of the air behind the rotor is v3 = 8 m/s.
The diameter of the rotor is D2 = 55 m, the density of the air is ρair = 1.2 kg/m3. Find the calculated
efficiency related to the theoretical maximum of the efficiency?

Solution:

� ∆v = v1 − v3 = 4 m/s

� A2 =
D2

2π
4 = 2376 m2

� P input = ρairA2v1
v21
2 = 2.463 MW

� Puseful = ρairA2v
3
1

(
1− ∆v

2v1

)2
∆v
v1

= 1.140 MW

� η = CP =
Puseful
P input

= 0.463 < 16
27 = 0.593

Problem 7.3.68

How large is the power of a wind turbine of 30m rotor diameter if the wind speed is 8m/s? The Betz limit
of the power coefficient Cp is 0.593.



Chapter 8

Compressors

8.1 Piston compressors

8.1.1 Introduction

8.1.2 Flow rate

Figure 8.1 displays the p−V diagram and the T −s diagram of a piston compressor’s the ideal working cycle.
The parts of the working cycle are: 1-2. intake (isobar), 2-3. isentropic compression, 3-4. isobar outlet, 4-1.
isentropic expansion.

The full volume of the piston (Vpiston) consists of two parts: the stoke volume Vst, which is the area of the
piston multiplied by the stroke s(m). The second part is the clearance volume V0, in which some air remains
after the outtake. This clearance volume greatly affects the working cycle.

Figure 8.1: p− V and T − s diagram of the piston compressor’s ideal working cycle

Figure 8.3 displays a more realistic work cycle of a piston compressor. We will consider this second working
cycle, since the 4-1. expansion process is actually polytropic, which has a significant influence on the operation
of the machine.

The volumetric flow rate at the suction side can be calculated using the usual formula of positive displacement
pumps:

129
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Figure 8.2: p− V diagram of the piston compressor’s realistic working cycle. The red line is the polytropic
expansion of the gas in the clearance volume V0

Qs = ηvnVs(ps). (8.1)

Before gas enters the piston in the intake phase, first the gas in the clearance volume V0 expands, until it
reaches the suction side pressure. In Figure 8.3, this expansion, which can be assumed to be a polytropic
process, is displayed in red. The equation of the expansion is the following:

p · V n = const. = pp · V n0 = psV
n
0,s, (8.2)

in which V0,s is the volume at the end of the expansion. Rearranging yields

V0,s = V0

(pp
ps

)1/n

. (8.3)

To calculate the volumetric flow rate, we would like to know the function Vs(ps). We find this using the
geometric relation which can be read from Figure 8.3:

Vs = Vst −∆V = Vst − (V0,s − V0) = Vst −

(
V0

(pp
ps

)1/n

− V 0

)
= Vst − V0

((pp
ps

)1/n

− 1

)
, (8.4)

where we also used Eq. 8.3. Finally, the formula is

Vs = Vst

[
1− V0

Vst

((pp
ps

)1/n

− 1

)]
(8.5)

Substituting this to Eq. 8.1, we get:

Qs = ηvnVst
Vs
Vst

= ηvnVst

[
1− V0

Vst

((pp
ps

)1/n

− 1

)]
(8.6)

To determine the pressure side volumetric flow rate, we can use the conservation of mass:

Qsρs = ṁ = Qpρp. (8.7)
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Figure 8.3: p− V diagram of the piston compressor’s real working cycle.

8.1.3 Control of flow rate

Change revolution number As it is obvious from Eq. 8.6, Qs(s) is a linear function of n.

Suction side valve / bypass Similarly to pumps and fans, these control techniques can be utilized easily.

Adjustable clearance volume The clearance volume V0 affects the volumetric flow rate, which is obvious
from Eq. 8.6. By changing the clearance volume, the volumetric flow rate can be adjusted.

Inlet valve unloaders The suction side valve is not allowed to close fully, which means that during the
compression process, a portion of the gas goes backwards in the suction pipe.

8.1.4 Multistage compressors

It is often advantegous to split a compression cycle to two or more stages and use an intercooler between
the stages.

more text

Consider the case of two stages, the first compressing from ps to px, while the second one from px to pp. We
are searching for the intermediate pressure px giving the lowest power, that is, the lowest specific work. The
specifiy work of the two stages are (see (1.26))

Ys→x = RTs
n

n− 1

((
px
ps

)n−1
n

− 1

)
and Yx→p = RTs

n

n− 1

((
pp
px

)n−1
n

− 1

)
. (8.8)

Note that due to the intercooler, the initial temperature of stage 2 is Ts (instead of Tp). The optimal pressure
will give

∑
Y (px) = Y1→x + Yx→2 → min, that is
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0 =
d

dpx
(Y1→x + Yx→2)

0 =

(
px
ps

)− 1
n 1

ps
+

(
pp
px

)− 1
n
(
−pp
p2
x

)
(
px
ps

)− 1
n px
ps

=

(
pp
px

)− 1
n
(
−pp
px

)
pp
px

=
px
ps

px =
√
pspp. (8.9)

For example, for ps = 1 bar and pp = 8bar, we have px = 2.83 bar is the optimal interstage pressure. The
specific work for the one-stage compressor would be (R = 287kJ/kg, Ts = 293K, n = 1.3) 224 kJ/kg, where
for the two-stage case, we have Y1→x = Yx→2 = 98.8 kJ/kg (each), which gives 2 × 98.8/224 = 88% of the
single-stage case.

8.1.5 Problems

Problem 8.1.69

We compress air (R = 287 J
kg·K ) with temperature t = 20◦C from ps = 1 bar to pn = 5 bar using a

piston compressor. The heat transfer between the air and the wall is not negligible (the compression is not
adiabatic), and because of this the compression can be characterized with a polytropic coefficient n = 1.3.
The stroke volume is Vst = 50 cm3, the volumetric efficiency is ηv = 98%, and the speed of the compressor
is n = 740 1

min . The clearance volume is 6% is the stroke volume. Find the

� suction side volumetric flow rate,

� power of the compression,

� and the pressure side volumetric flow rate!

Solution:

The swept volume Vs is

Vs = Vst

[
1− V0

Vst

((pp
ps

)1/n

− 1

)]
= 50 ·

[
1− 0.06 ·

((5

1

)1/1.3

− 1

)]
= 42.65 cm3. (8.10)

From this, the volumetric flow rate at the suction side is

Qs = ηvnVs = 0.98 · 740 · 0.04265 = 30.93
dm3

min
= 5.155 · 10−4 m3

s
. (8.11)

The power is the following:

Pu = ṁ

∮
dp

ρ(p)
= ṁ

p
1/n2−3
s

ρs

∮
dp

p
1/n2−3
s

=
ṁ

ρs
ps

n

n− 1

[(pp
ps

n−1
n − 1

]
=

Qsps
n

n− 1

[(pp
ps

n−1
n − 1

]
= Qs · 105 · 1.3

0.3

[
5

0.3
1.3 − 1

]
= 194903 ·Qs (8.12)
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During the compression the density of the gas increases, therefore the pressure side volumetric flow rate is
lower than it is at the suction side:

Qp = Qs
ρs
ρp

= Qs

(ps
pp

)1/n

= 30.93 ·
(1

5

)1/1.3

= 8.968
dm3

min
(8.13)

The volumetric flow rate is ṁ = Qsρs = 0.037 kg
min .

Problem 8.1.70

Using the data of problem 8.1.69, how does the suction side volumetric flow rate and the mass flow rate
change, if we increase the clearance volume to be 40% of the previous stroke volume!

Approximating air as an ideal gas, we get

ρs =
ps
RTs

=
100000

287 · 293
= 1.189

kg

m3
= 0.001189

kg

dm3
(8.14)

The new clearance volume is V ′0 = 0.4 · Vst, and substituting this to the formula of the swept volume yields

V ′s = Vst

[
1− V ′0

Vst

((pp
ps

)1/n

− 1

)]
= 50 ·

[
1− 0.4 ·

((5

1

)1/1.3

− 1

)]
= 1.024 cm3. (8.15)

The new volumetric flow rate is

Q′s = ηvnV
′
s = 0.98 · 740 · 0.001024 = 0.742

dm3

min
, (8.16)

and using the suction side density, we can find the mass flow rate

ṁ′ = ρsQ
′
s = 0.001189 · 0.742 = 8.8 · 10−4 kg

min
. (8.17)

This is only 2.3% of the original volumetric flow rate (ṁ = 0.037 kg
min ), so the compressor is basically useless.

It is important to note that changing the clearance volume is a widely used control technique.

Problem 8.1.71

Using the data of problem 8.1.69, find the power of the compression, if the compression is carried out in
two steps, during which at the intermediate pressure p = 2.236 bar. Between the two compression steps,
the air is cooled down such that the ration of the first and second piston volumes is

Vpiston,1
Vpiston,2

= 1
2.236 . For

simplicity, assume that the clearance volume is in both cases V0 = 0.!

(Solution: Pu = 106.88 W)

Problem 8.1.72

Find the number of stages in a piston compressor, which compressed nitrogen from ts = 20◦C and pressure
ps = 1 bar to pn = 100 bar absolute pressure! The criterion of the compression is that the temperature of
the gas cannot exceed tlimit = 140◦C! Because nitrogen gas molecules consist of two atoms, it is very similar
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to air, therefore the specific heat ratio can be assumed to be κ = 1.4. The compression can be characterized
by a polytropic coefficient n = 1.33.

(Solution: 4)


