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Chapter 1

Some basic relationships of fluid
mechanics and thermodynamics

1.1 Continuity equation

In the absence of nuclear reactions, matter can neither be created or destroyed. This is the principle of mass
conservation and gives the continuity equation. Its general form is

% + div(pyv) =0 (1.1)
where div(v) = Vv = dv, /0x + Ov, /0y + Ov,/0z. If the flow is steady (0.../0t = 0) , we have

div(py) = 0. (1.2)

Moreover, in many engineering applications the density can be considered to be constant, leading to

div(v) = 0. (1.3)

The above forms are so-called differential forms of the continuity equation. However, one can derive the
so-called integral forms. For example, for the steady-state case, if we integrate (1.3) on a closed surface A,
we obtain

/pydA:/pvJ_dA. (1.4)
A A

Note that the surface is defined by its normal unit vector dA and one has to compute the scalar product
vdA. One can resolve the velocity to a component parallel to and another perpendicular to the surface as
v=uv, +v. Thus vdA = |v| |[dA| cosa = v dA.

In many engineering applications, there is an inflow A; and an outflow Ay, between which we have rigid walls,
e.g. pumps, compressors, pipes, etc. Let us denote the average perpendicular velocities and the densities at
the inlet A; and outlet Ay by vy, p1 and v, ps respectively. Than, we have

m = p1U1A1 = p2U2A2 = const. (15)

The quantity 1 is called mass flow rate (kg/s) and it simply reflects to the fact that under steady-state
conditions the amount of mass entering the machine per unti time has to leave it, also. If the density is
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constant, we have
Q =m/p=wv1A; = v2 A5 = const., (1.6)

where QQ (m?/s) is the volumetric flow rate.

1.2 Bernoulli’s equation

In the case of steady frictionless flow, the energy of the fluid along a streamline remains constant. Mostly
we deal with incompressible fluids, for which the energy content per unit volume is

mgh + %va + pV
\%

Pv2

=p+ 5 + pgh = constant. (1.7)

Energy per unit volume =

Considering two points of the streamline (the flow is from 1 to 2), we have

p
2

P

2v§ + pgha. (1.8)

p1+ S+ pght =p2 +

Note that the above form can only applied if

e the flow is incompressible, i.e. p = const,
e the flow is ideal, i.e. there are no losses (friction, separation, etc.),
e points 1 and 2 refer to two points on the same streamline and

e the fluid is Newtonian, i.e. the stress versus strain rate curve is linear and passes through the origin.
The constant of proportionality is known as the viscosity: 7 = p%. (In common terms, this means the
fluid continues to flow, regardless of the forces acting on it. For example, water is Newtonian, because
it continues to exemplify fluid properties no matter how fast it is stirred or mixed.)

The Bernoulli equation can be extended to include friction and unsteady effects:

dv
p1+ gvf + pgh1 = p2 + gvg + pghs + Z Cigvzg + PLE : (1.9)
—— N~
friction unsteady term

1.3 Energy equation for compressible flow

Without derivation, we simply state that the energy equation for frictionless, stationary flow of a compressible
ideal gas without heat transfer takes the following form

2

hy = % + ¢, T = constant, (1.10)

where ¢, [J/kgK] is the specific heat capacity taken at constant pressure and T [K] is the absolute (!) tem-
perature. The quantity h is called enthalpy, h, stands for total enthalpy, while the term c,T" is referred to as
h thermodynamic enthalpy.
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1.4 Thermodynamics

1.4.1 Specific heat capacities

Assume that a definite mass of gas m is heated from T} to Ts at constant volume and thus its internal energy
is raised from U; to Us. We have

mey AT =AU or cy AT = Au, (1.11)
where u is the internal energy per unit mass and cy (J/(kgK)) is the specific heat capacity measured at

constant volume.

Now we do the same experiment but now at constant pressure, thus its volume changes and work is done on
the fluid:
mep, AT = AU + mpAV, (1.12)

which, after rewriting for unit mass and combining with the previous equation for constant volume process,
also using the ideal gas model RdT = pdV gives

cp AT = Au+pAV = cy AT+ RAT — ¢, =R+cy. (1.13)

Thus we see that it is useful to define a new quantity which includes both the change of the internal energy
u and the pressure work pdv = pd (1/p). Some useful equations:
Cp K 1

R=c¢,—cv, n:;, cp:RK_1 and CV:Rm. (1.14)

1.4.2 Some basic thermodynamic relationships

One possible form of the energy equation for a steady, open system in differential form is

2
5Y+5qd<h+c2+gz>, (1.15)

0Y is the elementary shaft work, dq is the elementary heat transferred towards the fluid, both of them being
processes, which is emphasised by the ¢ symbol. And
2
e=h+ % + 9z

is the energy. Note that the above equation describes an elementary process, however, to compute the overall
process (to integrate the above equation), one has to know what kind of process takes place in the machine
(adiabatic, isentropic, isotherm, etc.) and the results depends on it (thus, the integral is inexact).

The term enthalpy is often used in thermodynamics. It expresses the sum of the internal energy u and the
ability to do hydrodynamic work p

h=u+L. (1.16)
p
Note that h = ¢,T and u = cyT. There are some forms of expressing the change in enthalpy (v = 1/p):

dh = d(u + pv) = dq + vdp = T'ds + vdp. (1.17)
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The entropy! is for an elementary change in the equilibrium is

0
ds = ?q + dSirrens (1.18)
with which, using (1.17) we obtain
dh = 6q + T'ds;rrev + vdp, (1.19)
with which (1.15) turns into
2
0Y =wvdp+d < + gz) +Tdsirren. (1.20)
2 ———
losses
0Yu(seful)

1.4.3 Input shaft work and useful work

The input shaft power is simply the work needed to change the enthalpy of the fluid:
-3
2

= 1hey (Ty — Th) (1.21)

Z1~z2,C1~C2

Pm:mAe: m<h2h1+ +g(2221))

When computing the useful work, we integrate the Y, part of (1.20) between points 1 and 2 (e.g. between
the suction and pressure side of a compressor). We still assume that 21 &~ 29 and ¢; & ¢s.

2 2
Y. z/ vdp:/ —dp (1.22)
1 1 P

In the case of an isentropic process, we have p/p = RT (ideal gas law) and p/p* = const. (k is the isentropic
exponent), thus

2 2 1/k 1/k 2 et
1 A
Yieontr, = / Lip— / DUy P [T g, K P (p2> 1| (1.23)
1P 1 P p ) K—=1p [ \p1

Note that the above equation gives

r—1

K r K
isentr. — - - - - 2 —411), .
Y, Lot (P2 1 R(Ty —T 1.24
k=1 p1 P1 k=1
v \‘,—/
RT, Ty /Ty Cp

which is exactly the input specific work defined by (1.21).

A typical compression system consists of a compressor and a pressure vessel, which stores the compressed
gas. Although the gas heats up during the compression but in the vessel it will cool back to the pressure of
the surroundings. In other words, we loose the heat energy and the ’useful’ process is isotherm. We have
p/p = RT (ideal gas law) and T =const., thus

2

1

Yisotherm = pfl/ 7dp =RIIn (pQ> (125)
pPLJ1 P D1

1 Entropy is the only quantity in the physical sciences that seems to imply a particular direction of progress, sometimes called
an arrow of time. As time progresses, the second law of thermodynamics states that the entropy of an isolated system never
decreases. Hence, from this perspective, entropy measurement is thought of as a kind of clock.
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The real processes are usually described by polytropic processes but formally we use the same equations
as in the isentropic case, with the slight change of using the polytropic exponent n instead of k. We have
p/p = RT (ideal gas law) and p/p™ =const., thus

2 n—1
1 n  p p2\ " n
—d = —=— —= -1l =—R(1I5-1TY). 1.26
/1 Pp n—1p [(pl> ] n—1 (2 1) ( )

Polytropic processes are real, non-adiabatic processes. Note that the polytropic exponent n is typically a
result of curve fit that allows the accurate computation of the outlet temperature.

polytropic

Finally, if the fluid is incompressible, we have

1 [? -
Yvincomp. = ;‘/1 1dp = b2 P b’ . (127)

In conclusion we have discussed four different case:

Isentropic: Y = ﬁ% [(gf) = _ 1] = R(T, - T),
Isotherm: Y =RI1In (%f) ;

no1
Polytropic: Y = ﬁ% [(gf) - 1} = R(Ty - T1),
Incompressible: Yy,=2 z;p 1

1.4.4 Specific work for hydraulic machines

In the case of pumps, the fluid can be considered as incompressible. However, instead of Y usually the head
is used:

Y. p2—p1  c3—¢c J
H=""— n Y- 2. - |Z 1.2
; 7 5 29 —2z1.  |m] (1.28)

In the case of ventilators, the energy change due to the geodetic heigth difference between the suction and
pressure side is neglegible (z2 & z1) and usually the change of total pressure is used:

2 2

5 —c J
Apy =Yup=p2—p1+p 2 B ! =Pt2 —Pt1- [Pa] = {mg] (129)

In the case of compressors, the fluid cannot be considered as incompressible. When neglecting the losses,
the specific work is:

Yu,isentropic =Cp (TQS - Tl) + = h2s,t - hl,t- (130)
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1.4.5 Efficiency

The ratio of the useful power and the input power is efficiency. For a given T, compression final temperature,
we have

Tos — T
isentropic — 5 1.31
n trop /1'12 _ fz'v1 ( )

for a polytropic process, we have

L R(jQ 11) n KR — 1
n—1
r ic — - . 1.32
Mpolytropic Cp(T2 — Tl) n—1 K ( )

1.5 Problems

Problem 1.5.1

The turbomachines conveying air are classified usually as fans (p2/p; < 1.3), blowers (1.3 < p2/p1 < 3) and
compressors (3 < pa/p1). Assuming p; = 1bar inlet pressure, ¢; = 20° C inlet temperature and isentropic
process (k = 1.4), find the the relative density change (p2 —p1)/p1 at the fan-blower border and the t5 outlet
temperature at the blower-compressor border. (Solution: (p2 — p1)/p1 = 20.6%, to = 128.1°C)

Problem 1.5.2

Assuming isentropic process of an ideal gas, find the inlet cross section area and the isotherm useful power
of a compressor conveying 1 = 3kg/s mass flow rate. The velocity in the inlet section is ¢ = 180m/s. The
surrounding air is at rest with pp = 1bar and Tp = 290K. ¢, = 1000J/kgK, x = 1.4. The pressure at the
outlet is equal to py = 4bar. (Solution: A; = 0.016 m?)

Problem 1.5.3

Gas is compressed from 1 bar absolute pressure to 4 bar relative pressure. The gas constant is 288J /kgK, the
specific heat at constant pressure is ¢, = 1005 J/kgK. The exponent describing the polytropic compression is
n = 1.54. Find the isentropic exponent. Find the isentropic specific useful work, the specific input work and
the isentropic efficiency. The density of atmospheric air is 1.16 kg/m®. h; ~ h is a reasonable approximation.
(Solution: k = 1.402, Visentropic = 176.28 kJ/kg, YVippur = 228.12 kJ/kg, Nisentropic = 77.28%.)
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Problem 1.5.4

Air is compressed from 1 bar absolute pressure to 3 bar relative pressure. The ideal gas constant
is 287 J/kgK. Calculate the temperature at the end of the compression, if the process is adiabatic,
and the value of the heat capacity ratio is: k = 1.4. The air temperature at the inlet is t; = 10°C.
Calculate the input shaft work, if the losses are Y’ = 70 kJ /kg. Find the isentropic useful work and
the isentropic efficiency! The h,; =~ h approximation is reasonable because the change of the kinetic
energy is negligible.

Solution:

p2 = 4bar absolute pressure. At the end of the isentropic compression the temperature of the gas

k=1

1.4—-1
is: TT—le = (%f) = (4) ™7 = 1,486 from which we get: Tb; = 1.468T; = 420K. However, if we
consider the losses, the temperature of the fluid will increase further. The heat capacity at constant
pressure:

kR kR 1.4 x 287
k—1 k-1 14-1

= 1005.J/kgK.

Yy isentropic = Cp(Tos — T1) = 1005 x (420 — 283) = 137.6k.J /kg.

Next, we add the losses:

Yin = Yu.isentropic + Y’ = 137.6 + 70 = 207.6k.J /kg.

The isentropic efficiency is: Misentropic = % = 0.66. The temperature at the end of the compression:
Y; 207.6
Ty =T =283+ —— = 489K = 216°C.
S A * 1005

Problem 1.5.5

Ideal gas (gas constant R = 288 J/kgK, specific heat at constant pressure is ¢, = 1005 J/kgK) with 27°C
and 1 bar pressure is compressed to 3 bar with compressor. The exponent describing the real state of change
is n = 1.5. Find the absolute temperature and density of the air at the outlet. Find the isentropic outlet
temperature, the isentropic efficiency and the isentropic useful specific work. Find the power needed to cover
the losses, if the mass flow is 3 kg/s. (Solution: Tj.q = 432.7K, p = 2.407kg/m?, Tisentropic = 410.6K,
Nisentropic = 833%1 }/isentropic =111.48 kJ/k& Pross = 6681{W)

Problem 1.5.6

Gas is compressed from 1 bar to 5 bar. The ambient air temperature at the inlet t; = 22°C' while at the
outlet to = 231°C. Gas constant R = 288 J/kgK. Find the exponent describing the politropic compression
and the density of air at the inlet and the outlet. (Solution: n = 1.5, p; = 1.177kg/m?, py = 3.44kg/m3.)

Problem 1.5.7

Along a natural gas pipeline compressor stations are installed L = 75km distance far from each other. On
the pressure side of the compressor the pressure is p, = 80bar, the density is p, = 85kg/m?, while the
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velocity of the gas is v, = 6.4m/s. The diameter of the pipe is D = 600 mm the friction loss coefficient is
A =0.018. Assuming that the process along the pipeline is isotherm, the pressure loss is calculated

2 2
Pheg —Pend Pbeg .2
2

as 5 Uheg-

L
= pbeg)\ﬁ

e Find the pressure, the density, and the velocity at the end of pipeline.
e Find the mass flow through the pipeline.
e Find the needed compressor power assuming that the compression is a politropic process and n = 1.45.

e Find the ratio of the compressor power and the power that could be released by the complete combustion
of the transported natural gas. The heating value of the natural gas is H = 43MJ/kg. (Hint:
Pcomb = mH)

Problem 1.5.8

A compressor carries air from a large open space to a tank (Figure 1.1). The properties of the ambient
fluid are the following: T' = 27°C, R = 286J/kgK, x = 1.4. The pressure after the compressor is
4bar, and the volumetric flow rate just before the compressor is @ = 2.5m/s. The politropic gas
constant, which describes the compression is n = 1.54. The diameter of the pipe at the suction
side and the pressure side is 125 mm. Check if the Mach number at the suction side is lower than
0.7! (Solution: Ma; = 0.609, Y;, = 200kJ/kg, P, = 487kW, Y, = 158.2kJ/kg, ps = 2.42bar,
Ty s = 445.9K, YVisentropic = 167.4kJ/kg, Yisotherm = 131kJ/kg.

Solution:
Check if the Mach number at the suction side is lower than 0.7!
0-1 analysis of the isentropic process (the losses are neglected):

po = lbar, Ty = 300K, R = 286J/kgK,k = 1.4,Q1 = 2.5m>/s,d; = dy = 125mm

Cross section of the inlet: A4; = d127r/4 = 0.1252 x /4 = 0.01227m?. Velocity at the inlet: ¢; =
Q1/A; = 2.5/0.01227 = 203.7m/s. Density of the ambient air: pg = po/RTy = 10°/286/300 =
1.166kg/m? , ¢, = ;—i. The velocity of the air increases as an isentropic process as it enters the pipe
at the inlet:

ho = htotar = const. = hy + c12 /2, therefore Ty = Ty — ¢12/(2¢,) = 300 — 203.7%/2/1001 = 279.3K

C1

VKkRT:

The Mach-number at the local speed of sound is: Ma; =

c1 203.7

Ma, = =
"7 VRRTT /1.4 x 286 x 2793

=0.609 < 0.7

(0.7 is a prescribed design parameter, which ensures that the Mach number is less than one.)




Fluid Machinery

0 1 2 3

—— 1

Compr.

Figure 1.1: Compression system of Problem 1.5.9.
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Problem 1.5.9

Find the input shaft work, the shaft power and the polytropic useful work of the previous problem!
Calculate the pressure of the fluid in the tank after it cools down to the temperature of the ambient
fluid! Find the temperature assuming that the compression is an isentropic process! Neglecting the
kinetic energy, find the useful work in case of an isentropic and isotherm process (the pressure before
and after the compressor can be assumed to be the same as for the politropic process).

Solution:

Calculate the input shaft work, the shaft power, and the polytropic useful work! The critical energy
change of the air shall be considered.

1 — 2: the compression can be approximated as a polytropic process.

£ 1.4
Pressure of the air at the inlet: p; = po (%) "= 100 - (2193) 74T = 77.8kPa. Density of

the air at the inlet: p1 = F& = 279.3 X 77800 % 279.3 = 0.974kg/m3. The mass flow rate is:
m = Ai1pic; = 0.01227 x 0.795 x 203.7 = 2.436kg/s.

The temperature at the end of the compression is:

n—1 1.54—1

D2 o 4 T.54
T=T (2 =2793( ——
2 1(p1) (0.778)

The density of the air at the outlet of the compressor is: ps = 15%2 = % = 2.82kg/m3. The

g 2.436 _
Aops  0.01227x2.82 70.4m/s.

velocity of the air at the outlet of the compressor is: ¢ =
The shaft work during the compression is:

co? — 12 70.4%2 — 203.72

Yin = cp(To—-T1)+ 5 +g(z2 —21) = 1001 x (495.9 —279.3) + 5 +0 =199.9kJ/kg.

The power of the compressor is: P = mY;, = 2.436 x 199.9 = 487kW . The polytropic useful work is:

y :L& pﬁ ﬂ;l _ 154 X77800 4 1'15.%52
LT =11 |\ b1 154—1 0974 |\0.778

As the air in the closed tank reaches its equilibrium state, is cools down to the ambient temperature.
Calculate the pressure in the tank after the air reaches the ambient temperature! The cooling of the
air in the tank (which is marked as number three in the figure) can be approximated as an isochoric
process (Gay-Lussac IL. law, p/T = const.)

1

] = 176.7k.J /kg.

E
15

it
= py=2 = 400000 x 300 _ 5 sopar
T 1

b =1 95.7

Calculate the useful work, if the compression process is assumed to be (i) isentropic or (ii) isothermal.
The pressure at the end of the compression should be the same as in the case of the polytropic process!
Useful works: p;— > ps = 4bar Isentropic:

Y; Rk PP = _ 14 77800 4\ T
isentropic k—1p1 1 14—-1 0.974 0.778

Isothermal:

] = 166.8%.J/kg.
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Problem 1.5.10
Calculate the efficiency in the case of the different processes of the previous problem.

Solution:

From the value of the input/shaft work and the useful work, the efficiency can be calculated in the
case of the different processes.

Y;sothermal 130.8

isothermal — = = 0.654

Nisoth l Y, 1999 0.65

Nisentropic = seyf Al 199.9 = 0.834
Yo 1764

ol = 3" = 1999

In the figure below (Figure 2.12), the h-s diagram of dry air is displayed. The red curves are the iso-
chore (v = 1/p = const.) curves, while the black curves are the isobar (p = const.). The compression
process is displayed by the blue 0-1-2-3 lines.

i
=3
L
=)
o
=
-4
o
w
g

500

e i
i)
RERY.0
mfz/%/

250

p=0.5

N
AN
~

il
™~ K\\. T

AN

65 686 6T 68 69 7 [A 72 73 T4 75
5 [kJkgk]

Figure 1.2: h-s diagram of dry air

Problem 1.5.11

At the pressure side of the compressor 2.5 bar absolute pressure and 187°C' temperature was measured, the
temperature of the inflow air is 27°C, and the pressure at the suction side is 1020 hPa (1 hPa = 100 Pa). Find
the politropic exponent of the compression and the politropic efficiency of the process, if k = 1.4! (Solution:
n = 1911, 1y, = 0.6).



Chapter 2

Incompressible turbomachinery

We classify as turbomachines all those devices in which energy is transferred either to, or from, a continuously
flowing fluid by the dynamic action of one ore moving blase rows. Essentially, a rotating blade row, a rotor
or an impeller changes the stagnation enthalpy of the fluid moving through it. These enthalpy changes are
intimately linked with the pressure changes in the fluid.

Up to 20% relative density change, also gases are considered to be incompressible. Assuming isentropic
process and ideal gas, this corresponds to pa/p; ~ 1.3. Thus, pumps, fans, water and wind turbines are
essentially the same machines.

2.1 Euler’s turbine equation

Euler’s turbine equation (sometimes called Euler’s pump equation) plays a central role in turbomachinery
as it connects the specific work Y and the geometry and velocities in the impeller. In what follows, we give
two derivations of the equation.

owk™

Figure 2.1: Generalized turbomachine

Derivation 1: Moment of momentum

Let us compute the moment of the force that is applied at the inlet and outlet of the generalized turbomachine

15
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shown in figure 2.1:

Ezg(mc) — M:%(zxmg):m(zxg) (2.1)

where m is the mass flow, and ¢ is the velocity of the fluid on the radius r. We consider the following
assumptions:

e The inlet of the turbomachine is a circle with radius r1, and the outlet with radius rs.

e ¢ velocity is considered constant in the sense that its length and angle are constant.
Thus

M =M, —M,;, =m(ry xcy) —m(ry xc)
. With this the power need of driving the machine is
mYy = P=wM-=(M

= ey (WX 1Ty) — ¢ (WX 1y)] =10 [Couy — ¢y uy]

out — M) w=1]w(ry X ¢) —w(ry X ¢)]

1 [leg]|ug| — ley|lug[] = 1 (c2uua — crywn) (2.2)

where u; = |y;|, and ¢; = |¢y,|cos(a). Comparing the beginning and the end of the equation, we see that
the specific work is

‘Y = Cou U2 — C1 U7 ‘ (23)

Derivation 2: Rotating frame and reference and rothalpy

The Bernoulli equation in a rotating frame of reference reads

2
w
PyY U= const., (2.4)
p 2
where U is the potential associated with the conservative force field, which is the potential of a rotating
frame for reference: U = —r?w?/2. Let w stand for the relative velocity, ¢ for the absolute velocity and
u = rw for the ’transport’ velocity. We have ¢ = u + w, thus w? = u? + ¢ — 2uc = u? + ¢ — 2u ¢, which
gives

DN

2 2,2 229 2
—r; :%+m%—%:;+%—cu:const. (2.5)

b

+

SRS
| §

Cy U

Thus we see that the above quantity is conserved in a rotating frame of reference, which we refer to as
rothalpy (abbreviation of rotational enthalpy). Let us find now the change of energy inside the machine:

Y=A (iﬂ;) = A(cqu), (2.6)

which is exactly Euler’s turbine equation. (For compressible fluids, rothalpy is I = ¢, T + % — UCy.)

2.2  Velocity triangles and performance curves

From the Euler turbine equation we have:
Ape = pgH = p(cauuz — cruu1)

where H is the head of the pump. Known the velocity triangle’s components and the density of the fluid,
we get:
C2, U2 — C1 U1

9

H= (2.7)
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The volume flow rate is
Q = camAz = cop Dambs, (2.8)

where D5 is the impeller outer diameter, by is its flow-through width at the outlet. From 2.7 and 2.8 we
have that ¢ outlet absolute velocity is the connection between the head and the flow rate of the pump. Also
one can notice, that if Ap, increased, that is when ¢, is increased than @ decreases (cay, decreases). And
if Ap, decreased (ca, decreased) than @ increases (ca,, increases). So our goal now is to find a relationship
between the head and the flow rate of the pump.

2.2.1 Radial (centrifugal) machines

Let us consider a centrifugal pump and the velocity triangles at the impeller inlet and outlet, see Fig. 2.2.
The theoretical volume flow rate is

ch = CQmAg\IJ = CQmDQﬂ'bQ\II, (29)

where D is the impeller outer diameter, by is its flow-through width at the outlet and co,, is the radial
component of the outlet absolute velocity. ¥ < 1 is a constant called blockage factor that takes into account
that the real flow through area is smaller due to the blockage of the blade width at the outlet.

[:H]
A
3
7]
(7]
2
o

Side

Downstream
‘Pipe Flange

YL L

Driveshaft Flange
Rotating Direction *

Indicator °-.,

Pump Casings..

Volute
«**Chamber

T,
*+ Impeller

"**= Upstream
Pipe Flange

Figure 2.2: Centrifugal pumps

The velocity triangle describes the relationship between the absolute velocity ¢, the circumferential velocity
u and the relative velocity w. Obviously, we have ¢ = @+ . Moreover, we know that (a) the circumferential
velocity is u = D7n and that (b) the relative velocity is tangent to the blade, i.e. the angle between u and
w is approximately the blade angle .

Basic trigonometrical identities show that ¢, = us — co/ tan Bo. It is usual to assume that the flow has
no swirling (circumferential) component at the inlet (due to Helmholtz’s third theorem). In the reality, the
outlet flow angle is not exactly (2, thus the head is decreased, which is taken into account with the help of
the slip factor A (sometimes denoted by o in the literature).
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Figure 2.3: Centrifugal impeller with outlet velocity components.

If there is no prerotation (i.e. ¢1, = 0), we have

2 2
ch:ACQuUQ :)\<%_%%> :)\<%_% Com >
g g 99 g g tanfs

(4 42 Q (2.10)
N g gtan BaDomhby W th ) '

Thus, the theoretical performance curve Hyp(Qyp) of a centrifugal machine is a straight line, which is (see
Figure 2.4)

e decreasing as @ is increased, for backward curved blades, i.e. By < 90°,

e horizontal, for radial blades (82 = 90°) and

e increasing (as @ is increased) for forward curved blades, i.e. B2 > 90°.

2.2.2 Problems

Problem 2.2.12

A radial impeller runs at n=1440/min revolution speed and conveys ) = 40 1/s of water. The diameter of
the impeller is D = 240 mm, the outlet width is by = 20 mm. The blade angle at the outlet is S = 25
degrees. The inlet is prerotation-free. Find the theoretical head and draw a qualitatively proper sketch of
the velocity triangle at the outlet. (Solution: Hy, = 22.9m)

Problem 2.2.13

The mean meridian velocity component of a radial impeller with Dy = 400 mm diameter at n = 1440rpm
revolution speed is ¢, = 2.5 m/s. The angle between the relative and circumferential velocity components
is B2 = 25 degrees. With a geometrical change of the blade shape, this angle is increased to to 28 degrees,
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H B~00°
forward 3>90° B=90°
/g radial f=90°

backward p<90° //ﬁ
NI

B<90°

Qu

Figure 2.4: Effect of blade shapes > angle on the performance curve.

that results in 10% drop of the meridian velocity component. The inlet is prerotation-free. Find the relative
head change. (Solution: (Hase — Hago)/Hase = 4.6%)

2.2.3 Axial machines

In the case of axial machines the flow leaves the impeller axially, see Fig. 2.5. The flow-through area is
(Dg — D?) /4, where D, and D; stand for the outer and inner diameter of the lade, respectively. Notice
that in this case, u; = ug because it is assumed that the flow moves along a constant radius. Assuming
(again) prerotation-free inlet (c1, = 0), we have ca,, = ¢1 (due to continuity).

Figure 2.5: Axial pump (left) and axial fan (right)

However, an important difference between axial and centrifugal pumps (fans) is that in the case of axial
machines, the pressure rise changes along the radial coordinate of the blade:

Ap(r) = pu(r) (cou(r) — clu(r))|clu=0 = p(2rmn) <2r7m — t;j{%) . (2.11)

Thus, if we wanted to obtain constant Ap; along the radial coordinate, the change of the circumferential
velocity has to be compensated by varying fSs.
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Figure 2.6: Axial impeller with outlet velocity components.

2.2.4 Problems

20

Problem 2.2.14

p = 1.25kg/m3. Draw the velocity triangles at the inlet and the outlet at the mean diameter.

2_p2\n
(D207 _ .00137 m?

L4 Aring =

4
O Dmean = DO;—DZ. = 0.03425m

® Upean = U1 = U2 = Dpeanmn = 4.913 7
® Cop =Clay = C2qy = utan By =1.788 %
* 4= Dot AringCar = 0.00184 22

° wyy = iy =21317%

o Acy =u — wg, =2.782 7%

O Aptotal,ideal = pUACu =17.1Pa

* Aptotal = nhAptotal,ideal = 14.5Pa

The outer diameter of a CPU axial cooler ventilator is D, = 47 mm the inner diameter is D; = 21.5 mm
the revolution speed is n = 2740 rpm. Due to the careful design the hydraulic efficiency is 1, = 85%
however the volumetric efficiency as consequence of leakage flow rate between the housing and the
impeller is just 7,,; = 75%. The blade angle at the suction side is $; = 20° while at the pressure side
B2 = 40°. Find the flow rate and the total pressure rise on the impeller. The density of the air is
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Problem 2.2.15

The inner diameter of an axial impeller is D; = 250 mm, while the outer one is D, = 400mm. The
revolution number of the impeller is 1470rpm. The inlet is prerotation-free. At Q = 0.36 m3/s the
hydraulic efficiency is 85%), the head is 6 m. The specific work along the radius is constant. Find the
angles 31 2 at the inner and outer diameter.

Solution:

e The velocity triangles are depicted in the Figure 2.7.

e The circumferential speed at the inner diameter is uy; = D;mn = O.QSW% = 19.24m/s. The

two circumferential speeds u; 1 and u; 2 equal as they are located at the same (inner) radius.

e The circumferential speed at the outer diameter is usg = D,mn = 0.47r% = 30.79m/s. Again
the the two circumferential speeds u,1 and u, 2 equal as they are located at the same (outer)

radius.

e The theoretical head is Hy, = % = nﬂh = 7.059m. We also have coyus = Hypg = 69.247
69.247

m?/s?, which is constant along the radius: Coui = Tga1 = 9-90 m/s and cgy 0 = 6390'.27497 = 2.25
m/s.

e The axial component of the velocity is cqy = 43 ﬁ%vz)ﬂ = (0.4‘&%'.3652” =4.70 m/s

e The blade angles are

c c
B1; = arctan — = 13.73° and fB9; = arctan ———— = 16.7°.
U2; U2q — C2ui

e With the same train of thought, one obtains 819 = 8.7° and [sg = 9.4°.

Incoming Outgoing
u, u,
clzcm Bla c“ Bla
W, & W,
ciu

Figure 2.7: Velocity triangles
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2.2.5 Real performance curves

Our analysis so far assumed that the flow inside the impeller is ideal (no losses) and that the streamlines
are following the blade shape (thus, blade angles are also the streamline angles). However neither of these
assumptions are true.

There are significant friction losses inside the impeller, the narrower the flow passage is, the higher the
friction losses will be. Moreover, the volute also introduces friction losses. These losses are proportional to
the velocity squared, thus H, .0, X Q7.

On the other hand, if the angle of attack deviates from the ideal one, one experiences separation on the two
sides of the blade. This is illustrated in Figure 2.8 for a constant circumferential velocity u as the flow rate
and thus the inlet velocity ¢ is varied, the relative velocity w also varies. At the design flow rate Qg the
angle of attack ideal. For small flow rates, we have separation on the suction side of the blade, while for

larger flow rates the separation is on the pressure side of the blade. Thus we have H.,,,.qsi0n % (Q — Qa)*.

To obtain the real performance curve, one has to subtract the above two losses from the theoretical head:
H = Hy,(Q) — K1Q% — Ko(Q — Qg)?, which is illustrated in 2.8. Note that at the design point and close to
it, the friction losses are moderate and no separation occurs. For lower flow rates, the friction loss decreases
while separation increases. For higher flow rates, both friction and separation losses increase.

/KZ(QQd)2

y

f
Qd(esign)

Figure 2.8: Friction and separation losses in the impeller.
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2.3 Losses and efficiencies

Let us analyse the losses that decrease the efficiency of a turbomachine (see Figure 2.9).

Py Py Plye L™

Figure 2.9: Losses of the pump.

Let the input mechanical power transmitted by the shaft be denoted by F;,,u:. We have than

Mechanical losses P/, These represent the friction loss in the bearings and the mechanical sealing losses

(if any). The remaining power is called internal power P; = Pippu — P},

Disc friction losses P(;f A significant shear force appears in the fluid entrapped between the housing and
the impeller, which is taken into account by the disc friction coefficient: P(;f = vgr P;. The remaining
power is the theoretical power of the impeller: Py, = P; — Pa’if =(1—vg)P;.

Hydraulic and volumetric losses P,;, P/ The theoretical head Hy, and flow rate @, and is further
decreased by the leakage flow rates (Qi(cakage)) inside the pump (flow across the gaps between the
impeller and the housing) and the internal frictional losses h’ (e.g. in the impeller and volute). We
have

Py = QuupgHn = (Q + Q1) pg (H + 1) = QpgH + QipgH + Qunpgh’
—— e N —

P, P! P
Q+Q H+HW Qi H
= QpgH L = QpgH = = — P, = Py (2.12)
Q H Q H
~
net
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2.3.1 Problems

Problem 2.3.16

Solution:
The power flow chart is in Figure 2.10

o P, =Py, —P,=307kW — n,=095.9%

Py, = (1-v)P, = 28.7kW

h ™ pgQ

pgH:n

Noverall = Tv * Th * (]— - V) cMNm = 75.9%

The revolution number of a water pump is 1470 rpm, the flow rate is @Q = 0.055m?/s and the head is
H = 45m. The hydraulic power loss is P; = 2.5kW, the mechanical power loss is P}, = 1.3kW, the
disc friction coefficient is vy = 0.065. The input power at this operating point is P;, = 32kW. Make
a complete analysis of the losses, including leakage flow rate and the theoretical head.

W,=th =463m — Hy=45+463=49.63m — 1pyar = 90.6%

o Qi = 2 =0.0589m%/s =  Qieakage = 0.00395m3/s  — 1, =93.2%

Figure 2.10: Power flow chart
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Problem 2.3.17

Calculate the theoretical head, the theoretical volume flow rate, the hydraulic efficiency and the volumetric
efficiency based on the data of the water pump. Py = 43.5kW, Q = 1100dm?3/min, H = 180m,
Pl oo = L6KW, vge = 0.03,h' = 32m. (Solution: Hy, = 212m, Qi = 0.01954m3/s npyar = 84.9%

Moot = 93.8%)
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2.4 Dimensionless numbers and affinity

Based on the previously obtained formulae for theoretical head, we define dimensionless numbers as

2 2
Con U5 u
H =npHy, = 2mp— 2 =2 213
Nhtdtp Mh us 29 29 ( )
or, in the case of fans
Ap, = zbgu%, (2.14)

where 9 is a dimensionless pressure rise. Similarly, we have

4D27Tb2 Com, 2
2 M, D2 =
4D% u U272 14

Dar
4

Q = nUch = nvDQﬂ-bQC%n ="M uz (215)

These dimensionless quantities are called pressure number v and flow number . What we found is that
H « n? and Q o« n allowing the transformation of the performance curve given at n; to be computed to
another revolution number nsy. This is called affinity law:

H,y <n1>2 Q1 M Py (n1>3
—=—=), Z=T=—= -5 === 2.16
Ho no Q2 n2 P, N2 ( )

As we have seen, both 1) and ¢ contains two parameters, Dy and usg, out of which one can be eliminated,
resulting in new dimensionless numbers. Let us start with the elimination of Ds.

Q 4Q
= = 2.1

: DT%W Din?n 240
H 2gH

Y= 2 = e (2.18)
22 2

from which we have 52
1/2 9 D 3/2,.3/2 1/2

= = == n
Z/}3/4 D;’/zﬁ\/ﬁ (2gH)3/4 \4/593/4 H3/4
Ng
Note that ¢ depends only on the revolution number but takes different values along the performance curve.
Thus when actually computing it, one takes the data of the best-efficiency point. Moreover, we do not

include the constant term Finally, by definition, the specific speed of a turbomachine is

VT
V2gd/4

(Qopr.[m?/s])"?
(Hope. [m))*/*

ng = n[rpm| (2.20)

Specific speed defines the shape of the impeller, low specific speed means low flow rate and high pressure
rise (radial impeller) while high specific speed occurs when the flow rate is high and the pressure rise is low,
see Fig. 6.4.

Based on experience the available maximum efficiency can be estimated in the knowledge of Q,,: and n, as
follows

Nmaz = 0.94 — 0.048Q,.% — 0.29 <log (%))2 . (2.21)

Representing dopt(0opt), turbomachines having good efficiency pass a narrow path. This diagram is called
Cordier-diagram. The centre of the path can be assumed with
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H, Caq

Power, head,
efficiency

Power, head
efficiency

Power, head.
efficiency

Capacity Capacity Capacity
Nq
I I
100 150 200 300
Radial-vanes Francis-vanes Mixed-flow Axial-flow

Figure 2.11: Specific speed and shape of the impeller.

2.1 1.34
_ (iTZITSETES) . (2.22)

Experience moreover shows that for a given n, estimation can be given for the ideal value of 9 as follows

300 \Y*
(2 2.2
v (270+nq) (223)

2.4.1 Problems

Problem 2.4.18

The input mechanical power of a water pump is 25 kW, the revolution number is 1440 rpm, the flow rate
is 0.06 m®/s. The volumetric efficiency is estimated as 1, = 0.92, the hydraulic efficiency is 7, = 0.85, the
disc friction power loss is P(;f = 0.9 kW, the mechanical loss is P/, = 1.3 kW. Find the head and the specific
speed and make a sketch of the impeller. (Solution: H=30.3m, n,=27.3, the impeller is a thin radial one.)

Problem 2.4.19

The revolution number of a pump is 1450 rpm, the head and flow rate at the best-efficiency point are 17m
and 0.03 m?/s. Find the specific speed. Find the diameter of the impeller if, based on industrial experience,
the pressure number at the best-efficiency point should be ¢ = 1. Find the flow number ¢. Find the head and
flow rate at 970rpm. (Solution: n, = 30, Dy = 240mm, ¢ = 0.036, Q970rpm = 0.02m>/s, Ho7o;pm = 7.61m)

Problem 2.4.20

The head produced by a six stage pump type CR 8-60 is H[m] = 68 — 0.2Q?, the speed of rotation is
n = 2850 ——. The efficiency is 7 = 0.66 — 0.00731(Q — 9.5)>. The unit of the flow rate in the formulae is
[m3/h]. Find the specific speed. Based on the specific speed, find the type of the impeller. Determine the
input power of the water delivering pump for zero delivery ) = 0 by extrapolation from calculated points in
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the range @ = 1.5;1;0.5m3/h, and using L’Hopital’s rule. (Solution: n, = 29.9, hence the impeller is radial;
P, = 1334W.)
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Problem 2.4.21

The characteristic curve of a pump at n; = 1450/min rotor speed is H; = 40m — 40000s%/m>Q?.
Calculate 5 points of the pump-characteristic for the rotor speed ns = 2900/min in the flow rate
range Q2 = 0,01m3/s — 0,05m?/s at 0,01m>/s intervals. According to laboratory tests the affinity
law is valid in this range. Give the equation of the characteristics H2(Q2) for the rotor speed ns!
(Solution: Ha(Q2) = 160 — 40000Q3)

Solution:

Affinity laws:

H. 2 P, 3
2 _"T2_g Z2_(T2) _92_4 and —2:(@) — 23 =38
gl m H, ni P nl

2.with affinity q1 = q2/2[m3/s] | 0 [0.005 [ 0.01 [ 0.015 [ 0.02 | 0.025

3.with the caracteristic curve Hi[m] 40 39 36 31 24 15
1.given q2 [m3/s] 0 0.01 | 0.02 | 0.03 | 0.04 | 0.05

4.with affinity Hy =4H; 160 | 156 144 124 96 60

Conversion of the characteristic curve analytically

the general shape of the characteristic curve of a pump at nl speed: H; = A + Bq + Cq® (n this
case we assumed that the characteristic curve H(q) of a pump can be described with a second degree
polynomial. In reality this is a good approximation). In the present problem, the linear term (Bq) is
Z€ro.

Hy=A+Bq+C?%=A+C%.
We have:

2 2 2 2
Hy = H, <”2> _ (”2) (A+Ca?) = 1 <”2> _ A <”2) O,
ny n1 ny n

In the first step of the above derivation, the affinity for the transport height H is used, in the second
the characteristic curve H; is substituted. In the third we also use the affinity for the volume flows
rate g, and in the fourth we remove the parantheses from the equation. The caracteristic curve of

the pump is:
2 2
Ng 2 2920 %
= — = —— | —40000q°.
Hy=A <n1> + Cq* = 40 x (1460 0000gq

2
A+ Cgo? (”1)
na2

If the linear term B is non-zero, we have

2
n n
Hy=A <2> +B (2> g+ Cgqo’.
ny ny

The specific speed is

v0.03

Ng = n2q2,optl/2H2,opt_3/4 = 2920 x oud/

= 43.04.

Note that this number is independent of the actual revolution number (as long as the optimal head
and flow rate is properly used), which justifies its name. Finally, the characteristic curves are plotted
in Figure 2.12
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Figure 2.12: Convert characteristic curves to other speeds

Problem 2.4.22

Find the specific speed of the pump given by 2.13, if the revolution number is 3000 rpm. Make a sketch of
the impeller. (Solution: n, = 92, mixed impeller.)

Problem 2.4.23

The performance curve of a pump at 1450 rpm is given by H = 100 — 30000 Q? and the efficiency is given
by n = —78000 Q% + 4500 Q). Find the head and flow rate of the best-efficiency point. Find the performance
curve at 1740 rpm. (Hopr = 76m, Qopr = 0.02855m3 /s, Nmaz = 64.9%, Hi740rpm = 144 — 30000 Q?)

Problem 2.4.24

Assuming prerotation-free flow at the inlet, find the pressure number-flow number of a radial pump with
backward swept impeller at the design (optimal) point! The pump has 9 impellers, so the slip factor is
approximately one (A = 1). The blade angle at the outlet is f2 = 40° and the flow-through width of the
impeller is 9 % of the outer diameter (ba/Ds = 0.09). The outer diameter Dy = 200 mm, and the speed of
rotation is n = 1450 1. Calculate the specific speed (nq) of the machine! At the optimal (design) operation
point, the hydraulic efficiency is n, = 86 %, the volumetric efficiency is 7, = 95 %, the flow number is
¢ = 0.12, and the blockage ration is ¢ = 1. (Solution: ¢ = 1.00, Hop = 11.74, Qopr = 0.0572, ny = 54.68)



31

Fluid Machinery

25

20 ~

H [m]
/

5
0
0 50 100 150 200 250 300 350 400 450 500
1
/’_\\
=05

50 100 150 200 250 300 350 400 450 500

0
0
Q [m’/h]

Figure 2.13: Performance chart for Problem 2.4.22.

Solution:
2
U9 Q )
H = A— U — ——————— with A=1 and =1
& g ( : Uv?/JzDszztgﬂz) V2
2 Do2nm
Ug wa? $D2°7
wg - Tiynh (1 - ﬂvu2D§7rbzt2g62> - (224)
_ 1 . 1 B

Y= 2m (1 - W@ =20 (1 - m(b) =1.72- (1 - 3.485 - ¢) (2.25)

Popt = 1.72 - (1 — 3.485 - hopy) = 1.72 - (1 — 3.485 - 0.12) = 1,

in case of centrifugal pumps and centrifugal fans this is a common value.

1451
Uy = Dorn =027 - 0 = 15.18m/s

22
02T 1 5 18 = 0.0572m° /s

2 2 2
(%) 15.18 .D2 s
Hopi = woptg =1x 7 08l - 11.74m and Qopt = (;SoptT =0.12-
From whic we have
t v/0.0572
nq:n@ = 1450 - ——— =55
opt * 11.74=
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2.5 Forces on the impeller

2.5.1 Axial force

The axial force results from two components:

e Momentum force

e Pressure distribution on the hub(back of the impeller) and shroud(front of the impeller).

The overall axial force is

Faz - Fhub - Fshraud + Fimpulse + mg, (226)
~~

in case of vertical impeller

and its direction is towards the suction side (the axial force tries to ’pull down’ the impeller from the shaft).
The impulse force is

2
Fimpulse =mv = /)Q Q = P% (227)
~~ A1 1
N~

T P2 T
p2-Ap; Ap,
I, I
Ap,
L rl
Pi M
1 Lshaft
(N

f |
P2 pitAp; -p, \ § p1 p2

Figure 2.14: Pressure distribution on the hub.

In general for a rotating frame the pressure distribution is
_ 14 2
p(r)y=K+ i(rwf) , (2.28)

where K is a constant and wy is the angular velocity of the fluid.

K can be calculated from the boundary condition. Since the pressure exactly known at the end of the
impeller (r = r3). For the hub this is
p

ph(TQ) =p2 — ph(T) =po — Ew]% (r% — ’I“2) . (2.29)
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In case of the shroud a pressure drop (Aps) is reducing the pressure at the boundary:

ps(r2) =p2o —Aps  —  ps(r) =p2 — Aps — gwfc (r3 —r?). (2.30)

The forces can be evaluated as the definite integral of the pressure distribution. The axial force becomes on
the hub (back of the impeller):

T2 T2
Foop = / 2rmpp(r)dr = 27r/ Por — gw? (r%r — r3) dr =
2 _ .2 T a2 4_ .4
_ g =Ts P of 2Ty —Tg T —T, -
= 27 [pg 5 —§wf <7“2 5 _ 1 9)] =
r3 —r? P r2 —r?
= 27r24‘{p22wj2c<7"§22‘>}, (2.31)
finally
2 2 P oT3 T3
Fuup = (r3 —15) m {p2 = Swi=5— ). (2.32)
A similar result is obtained for the shroud (front of the impeller) with replacing r4 by 71:
2 2 p T3 —ri
Fshroud = (T2 - 7’1) ™| p2 — APQ - §Wf B . (233)

2.6 Problems

Problem 2.6.25

Find the axial force on the back of the impeller, whose outer diameter is Dy = 300mm, the shaft diameter
is Dy = 50mm, the outlet pressure is 2.3bar and the revolution number is 1470rpm. The average angular
velocity of the fluid is 85% of that of the impeller. (Solution: F = 9.36kN)

Problem 2.6.26

Calculate the axial force acting on the supporting disc of a pump impeller of 280mm diameter if the pressure
at the impeller exit is 2bar. The hub diameter is 40mm. There is no leakage flow through the gap between the
rotor supporting disc and the casing. The rotor speed is 1440/min. The angular velocity of the circulating
water is half of that of the rotor. Find the formula of pressure distribution as a function of the radial
coordinate! Draw the cross section of the impeller and the axial pressure force! (Solution: p(r)(Pa) =
1.443 - 10° +2.842 - 105 - r2, F,, = 10418 N)

2.7 Cavitation

Two similar arrangement can be seen on left side of Figure 2.15. The only difference is the height of the pump,
although this cause major deviation in the pressure distribution along the pipe line as it can be observed
on the right side of the Figure. In the worst cases the pressure can be below the saturation vapour pressure
which means locally the vapour bubbles are appearing. This is called cavitation. The vapour pressure is
usually a function of the temperature, e.g. for water:

t[C] 10 20 40 60 80 100
po[bar] 0012 0.02 007 02 047 1
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F-'w F\l Pﬂ +pEH

Figure 2.15: Representation of the cavitation.

There could be three major consequences of the cavitation:

e Increased noise among vibration,
e Drastic decrease in hydraulic performance curve: H — @,

e Damage of the impeller, see Figure 2.16.

Figure 2.16: Illustration of the cavitation damage in pumps.

34
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2.7.1 Net Positive Suction Head (NPSH)

To avoid cavitation it is not sufficient to ensure that the pressure at the suction side is larger than the vapour
pressure (ps > p,). Since inside the pump there is a complex flow, therefore it is possible to have p < p;
locally where the velocity is large enough. Ensuring the operational work without cavitation the NPSH has
to be defined. It is convenient to split the absolute pressure at the pressure side ps into two parts: p, vapour
pressure plus the part above that, deonted by pg x NPSH:

Ds = Do + pg X NPSH (2.34)
Net Positive Suction Head

this way, the NPSH value gives the net ”standby” pressure above the vapour pressure that is available before
cavitation occurs.

‘k ........ _é_@—

Pt

Figure 2.17: Representation of the NPSH.

There are two different NPSH values: available (NPSH,) and the required (NPSH,):

e The available NPSH, is a property of the hydraulic system (geometry, loss coefficients etc. of
the pipelines and tanks) and can be evaluated as

t — pv(T)

NPSH, =2 S - H (@), (2.35)

where the h'(Q) represents the frictional losses at the suction-side pipeline (see later in Section 3.1).

e The required NPSH, value can be found in the catalogue of the pump. It is usually depending
on the volume flow rate similarly to the head.

The condition for avoiding the cavity is that the available NPSH must be larger than the required NPSH,
mathematically:

NPSH, > NPSH, — no cavitation (2.36)

2.7.2 Problems

Problem 2.7.27
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A pump delivers water from a low-pressure steam boiler as shown in the figure below. Calculate the required
geodetic height of the reservoir to avoid cavitation! The pipeline losses are to be taken into account.

e mass flow rate: 7 = 27[kg/s], density of the hot wa-
ter: p = 983[kg/m?]

e pipe: L =10[m], d = 100[mm], A = 0.02 and the sum
of loss factors is ( =5

e pump: H[m|] = 82 — 4800Q2, NPSH[m] = 1.6 +
1360 Q2

Solution:
Ps It’s easy to calculate that
1 / Q =m/p=0.02747[m3 /5]
r H—i-@— cs = Q/A =3.5[m/s]
L H = 82 — 4800 x 0.02747% = 78.38[m]
NPSH = 1.6 + 1360 x 0.02747% = 2.626[m]

Bernoulli’s equation between a surface point in the tank and the suction side of the pump reads:

02 L&
P H = D 0 Mt
Py Py Py Py

From the suction side of the pump to the impeller we have:

2
&+& — pvapour +6(9—|-NPSH
pg 29 |

(Note that e = 0 as the configuration is horizontal.) Putting the above two equations together, we have

2
Pt — Pvapour _ G Hs+ L
H, = T + hyipe + NPSH,  where h, . = 3 (/\ 7 T ¢,
thus,
c2 /\ -1 C2 )\L
H, = _ sz NPSH + =% [ — =...=28.116
( 29d) [ +2g(d Hﬂ ]

Thoma’s cavitation coefficient is 0 = NPSH/H = 0.03355[—].

Problem 2.7.28

Calculate the required pipe diameter to avoid cavitation, if the pump delivers Q@ = 30dm?/s water from a
closed tank, where the pressure (above the water level) is p = 40kPa. The equivalent pipe length on the
suction side is 5m, the friction coefficient is A = 0.02, the suction flange of the pump is 3m below the water
level. The vapour pressure at the water temperature is 2.8 kPa. The required net positive suction head is
NPSH, = 3.2m. (The standard pipe diameter series is: DN 40, 50, 65, 80, 90)

Solution:

The sketch of the installation is shown in Figure 2.18

o NPSH, =2=P» _ [ —p/ 5 h,=PPe [ _ NPSH,
rg P9
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m

L=10,02
L=15m

Pk

Figure 2.18: Installation of the apparatus.

2 2
r _ yLe S _ L. 8Q
® hy =Apta; = AD: Dige

e D,=0.073m — D; = 80mm

Problem 2.7.29

Find the required suction side height of the pump that conveys water from an open surface reservoir at
Q = 180m3/h flow rate the head is H = 30m the required net positive suction head NPSH, = 5.03m.
The temperature of the water is 7' = 23° the ambient pressure is pg = 1023mbar. The hydraulic loss
of the suction side pipe can be calculated from h’ = 652[s?/m5]Q? while the vapour pressure p,(kPA) =
1.704 + 0.107(t — 15) + 0.004(t — 15)2. Find the Thoma cavitation number. (Solution: Hy = 3.481m,

o = 0.1677)



Chapter 3

Hydraulic Systems

3.1 Frictional head loss in pipes

In hydraulic machinery, instead of pressure p[Pal, usually the term head is used: H [m] = 1. In real

moving fluids, energy is dissipated due to friction, as well as turbulence. Note that as the hydraulic power
is P = pgHQ, but - because of the continuity equation - the flow rate is constant, the energy loss manifests
itself in head (pressure) loss. Head loss is divided into two main categories, "major losses” associated with
energy loss per length of pipe, and "minor losses” associated with bends, fittings, valves, etc. The most
common equation used to calculate major head losses is the Darcy Weisbach equation:

L v? L 8Q?
[ Ae— = \— _ 3.1
I~ "D2g "D Dr2g’ (38-1)
where the friction coefficient A (sometimes denoted by f) depends on the Reynolds number (Re = vD/v,
v[m?/s] = u/p being the kinematic viscosity of the fluid) and the relative roughness e/D (e [m] being the
roughness projections and D the inner diameter of the pipe). Based on Nikuradse’s experiments, we have
different regimes based on the Reynolds number.

e For laminar flow Re < 2300, we have A = 64.

e For transitional flow 2300 < Re < 4000, the value of A is uncertain and falls into the range of 0.03 . ..0.08
for commercial pipes.

e For turbulent flow in smooth pipes, we have % =195 log(Reﬁ) —0.55. However, this equation need

iteration for computing the actual value of \. Instead, in the range of 4000 < Re < 10°, the Blasius’s
formula is usually used: A = 0.316/V/ Re.

e For turbulent flow in rough pipes, Karman-Prandtl equation may be used: % = —2log ( 3_$D).

For Re > 4000, the Colebrook-White equation covers both the smooth and rough regime:

—2logy, (Pi:l[\ + 3;D)

sl

Figure 3.1 depicts the Moody diagram, i.e. friction coefficient vs. Reynolds number for different pipe
roughness values.

The loss due to bends, fittings, filters, valves, etc. the minor losses can be taken into account with the help
of the loss factor ¢ in the form of

B = ggqﬂ. (3.2)
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Figure 3.1: Moody diagram: loss factor X is a straigth pipe.

In design, minor losses (¢) are usually estimated from tables using coefficients or a simpler and less accurate
reduction of minor losses to equivalent length of pipe (giving the length of a straight pipe with the same
head loss), see Table 3.2 for some examples.

Another way of characterizing the loss (typically, of valves) is the use of K, values. The K, value expresses
the amount of flow in a valve (at a given valve position) with a pressure loss of 1 bar. The special situation
with a fully open valve determines the K, value. The amount of flow at a prescribed pressure loss can be
calculated using the formula:

Q (m?/h) = K,/ Ap (bar). (3.3)

3.2 Head-discharge curves and operating point

Let us consider a single pipe with several elbows, fittings, etc. that ends up in a reservoir, see Figure 3.3.

The head H,(ystem) needed to convey ) flow rate covers the pressure difference and the geodetic height
difference between the starting and ending point and the losses of the flow: the friction of the pipe, the loss
of the elbows, valves, etc., and the discharge loss.
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Figure 3.2: Minor loss coefficients.

2 2
v v
Hy(ystem) = <p +5-+ z> - <p +o=+ z>
Py 9 @ pump outlet Py 9 @ pump inlet

2
P2 U3 /
= ( +-+z2+ hafter the pump

L v?
DD AS %

frictional loss of the pipeline

L 1
<Z§+Z/\D+1> TV Q?

ry 29
S + (22 — 21) +
P9
_P2—n ¥ (22— 21)+
P9
Hstatic
= Hgtqt + BQ2

B

P
) - (pg + 21+ h{)efore the pump)

40

(3.4)

We see that the total head of the system consists of two parts: Hgset, that does not depend on the actual
flow rate and BQ?, which varies with the flow rate. Figure 3.3 depicts the pump head curve, the system
head curve and the intersection, that is, the actual flow rate and head that the pump conveys through the

system.
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operating point

2 lj\g

pump
system

Figure 3.3: Simple pumping system and its performance curves.

3.3 Problems

Problem 3.3.30

Consider the flow of water in a pipe of L = 100m, D = 100mm and the pipe roughness is e = 4mm. The
flow rate is @ = 36.7m?/h. Find the pressure drop.

Solution:

e The flow velocity v = %/O'f’r = 1.3m/s.

e The Reynolds number is Re = vD/v = 1.3 x 10° (the kinematic viscosity of water is v = 1075m?/s).

e If the pipe were hydraulically smooth, the friction coefficient would be X\ = %36 — 0.0166.

VRe
e We use the Colebrook-White equation iteratively, starting from Ay = 0.0166:
N T 2.51 e _ 2.51 4 _
— Step 11 A= = —2logy (22 + 555) = —2l0gw (552 mms + rimm ) = 39203, thus

A1 = 0.065.

1 2.51 e\ _ 2.51 4 _ <\, —
~ Step 2k = —2logig (22 + 5%5) = —2logyg (152 + simn) = 39262, thus A =
0.0649. This is reasonably close to A1, hence we stop the iteration.

e Finally, the pressure drop is Al = A% 502 = 0.06494°0 29001.3% = 54.84kPa = 0.548bar.

Problem 3.3.31
Calculate the head loss of the pipe depicted in the figure below as a function of the volume flow rate!
Parameters: (4 = 1.5, {(g.p = 0.26, (¢ = 0.35, {(r = 0.36, A = 0.0155, Dy = D, = D = 0.6[m] and
Q = 0.4[m3/s]. Solution:

e Static (geodetic) head + dynamic (friction) losses of the pipe: Hpipe = Hstar + Hfriction

e Volume flow rate: Q = Cs(uction)Apipe,suction = cp('r‘essu'r‘e)Apipe,p’r‘essu’l‘e = CApipe

e The ’extra’ 1 in the pressure side (...(p + 1) represents the outflow losses.
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2
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Hpipe = Hstat + KQ2 = Htat + D
p

&
RS

= 12[m] + 3.25[s%/m>] x Q*[m?/s]?

Problem 3.3.32

The artificial fountain Beneath the St. Gellert is fed by two pipelines of 30m length. The height distance
between the pump and the fountain is 22m. The diameter of the pipes is D1 = 100mm and Dy = 70mm,
the friction coefficient of the straight segments is A = 0.02 and the friction coeflicient of the other segments
(bends, etc.) is ¢ = 0.5. Assuming that the flow velocity in the second pipe is 1.5m/s, calculate the the
required head. Calculate the flow velocity in the second pipe and the overall flow rate of the common pump
feeding the two pipes.Assuming 65% overall (pump-+motor) efficiency, calculate the energy demand for 100
days and the cost of the operation if the energy tariff is 32HUF/kWh. (Solution: Without the bypass line:
H = 22.826m[], Q = 0.01678[m?/s], P = 5.78[kW] and Cost = 443691HUF'.)
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Problem 3.3.33

A pump delivers Q = 1200[dm?/min] water from an open-surface well, whose water level is 25[m]
below the default level. The pressure side ends 5[m| above the default level and the water flows into
an open-surface swimming pool. The diameter of the pipe on the suction side is Dy = 120[mm] and
D,, = 100[mm] on the pressure side. The loss coefficients are (s = 3.6 and (, = 14 (without the
outflow losses). Calculate the required pump head! (Solution: Hj, ;.. = 35.7[m]) Draw a sketch of
the system! (Figure3.4)

Solution:

The points which marked with I and IT indicates the beginning and the end of the pump. The whole
system is between 1’ — 2 points. The end of the draft tube shall be deep under the fluid surface to
avoid the air intake. But in this problem we neglect the x value (the height between the end of the
tube and the fluid surface).

Bernoulli equation between 1’ and I: e’ = e;. + h, it follows e/ = e} + hy’

Bernoulli equation between IT and 2: e;;. = es+ hp’7 in these formulas, e denotes the “Bernoulli sum”
of meter units.The volume flow rate is based on the description of the problem @Q = 1200dm3/min =
0,02m3/s. The head losses for the intake and the delivery ports:

2

V52 1 Q2 1 0.022 1 0.022
hs =(—— =(——= =3.6 x X =3.6 x X =0.5738
o9 =254, 2% 981 (0.12% x %) 2x 981 0.011312 "
0,2 1 Q2 1 0.022 2 1 0.022
B! — P _ T _ =14 = 4.62
P =, T, “ 2% 981 " (012 x I) X 3% 981 < D.0o7seaz — 02Tm
/4 4
Q 002
— = — 2.546
Y274, T 0.01131 m/s

(the specific kinetic energy of the water flow leaving at this speed is lost in the swimming pool (2),

its name is the discharge loss,%)
Hg = 29 — 21 = 25 — (—=5) = 30m (static head)
The head of the system (static head+ discharge loss):

2 2.546°
Hayotem = Ht + 2= = 30 +

2 5 x 081 _ S033m

The head of the pump:

Hpump =er7. —€er. = (62 + hp/) = (61/ = hs/) = €9 — 61/ + hp/ + hs/ =

2 2

( ’ V1

_ (p2+2+z2> _ <Pl+1+zl,) Ch R
pg 29 rg 29

at the surface of the fluid p; = py (atmospheric pressure), and v; = 0, because of the relatively large

surface of the well, this equation is substituted in the 2nd parentheses of the above equation. Using

that py = pg is also true:

va? v1? va? 0
H,. = (m + = +22)_</]o); + = +zl>+hn’+hs/ = (po + = +22>—<§; +— +z1>+hn/+hs'

pg 29 2g pg 29 2g

2
H,. = UQL + 22 — 21+ hy/ + ' = 35.53m
g
But we can also write that the head of the pump covers the head of the system as well as the losses:
H, = Hgyystem + hn' + hs' = 30.33m + 4.627m + 0.5738m = 35.53m
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Figure 3.4: Hydraulic system

Problem 3.3.34

The submergible pump shown in the picture below delivers @ = 30l/s water into the basin. The pipe
collecting the water of five equal pumps has a diameter D. The inner diameter of the pressure tube connecting
the pump with the collecting pipe is d. Find the Bernoulli enthalpy difference between the two ends of the
system, and the pump head! Further data are: D = 400mm, Ap = 0.018, d = 160mm, A\g = 0.021, Cfiiger = 3
s Cnro = 0.25, (pa = 0.35, Capg = 0.5, (pp = 0.22. (Solution: Aesystem = 11.07m, Hpymp = 12.80m)

Problem 3.3.35

The head of a 4 stage pump is 68 m, the speed of revolution is 1450 ﬁ This pump conveys water through
a horizontal pipe with diameter D = 120 mm. The volumetric flow rate is 0.03 mT& The friction coefficient
of the pipe is A = 0.025. Find the length of the pipe, after which an additional pump needs to be built in
the system, if the requirement is that the pressure in the pipe cannot be lower than it is at the suction side!
Calculate the same distance in the case when the pipe diameter is D = 160 mm! When fewer pumps are
in the system, the cost of the investment is obviously lower. Calculate the approximation of the investment
cost as a function of the pipe diameter! (hint: the investment cost has two parts: one which is proportional
to the pipe length per pump, and another which is proportional to the material cost (thickness of the pipe)).

(Solution: Ly = 910.5 m, Ly = 3835 m, cost = &L + kyD?.)
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Problem 3.3.36

Find the operation point of a pump which operates a fountain in a lake! The diameter of the pipe at the
outlet is 30 mm, and the water jet has to reach a height of 20 m. The elevation of the jet can be calculated
from Newton’s law and the gravitational acceleration. However, due to the breaking up of the jet into drops,
the jet reaches only 80 % of the theoretical height. At the suction side of the pump, there is a filter, which
is characterized by the loss coefficient {; = 0.7. At the pressure side, the length of the pipe is L = 1 m, the
friction coefficient is A = 0.02, and there are two elbows with loss coefficient (., = 0.2 for each of them. The
diameter of the pipe at the suction and pressure side is D = 80 mm. Find the specific speed of the pump,
if the speed of rotation is n = 1470 and the pump has two stages! Calculate the height of the water

! (Solution: @ = 0.01565 &, H = 25.668 m, n, = 27.13,

min

jet, if the speed of rotation drops to
hfountain,n=970 =8.71 m)

Problem 3.3.37

In a concrete pipe with diameter D, = 2800 mm (A, = 0.03), there is a smaller pipe with diameter D; =
1000 mm (A\; = 0.02). The inner pipe is in the center of the outer pipe. The length of both pipes is
L = 540 m. The height difference is Ah = 3 m, and this geodetic head drives the flow. Find the volumetric
flow rate

1. when there is no smaller pipe in the larger pipe and

2. when the smaller pipe is in the larger one!

The friction coefficients should be weighted with the wetted area! (Solution: @ = 70713 st, Qs =
51830 =)
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Fans

4.1 Problems

Problem 4.1.38

A fan conveys air that’s density is 1.2 %. The pressure difference between the pressure and suction sides is
200 Pa. The volumetric flow rate is Q = 0.4 st7 the diameter of the duct at the suction side is D7 = 200 mm,
and the duct diameter at the pressure side is Dy = 250 mm. Find the static and total pressure difference
created by the fan! Find the useful power of the fan! (Solution: Apgae = 102.8 Pa, Ap;,r = 142.6 Pa,
P, =57.03 W).

Problem 4.1.39

The mean diameter of an axial fan is D,,, = 500 mm, the speed of rotation is n = 1450 ﬁ The inlet blade
angle is 81 = 9.1°, the blade angle at the outlet is 82 = 12.3°, and the axial velocity is ¢, = 6.2 7. Find
the ideal total pressure difference created by the fan using Euler’s turbine equation! What is the actual total
pressure difference, if the hydraulic efficiency is n, = 80%? Find the static pressure difference! (Solution:
Aptot,id = 433.9 Pa, Apf,ot =347.1 Pa, Apstat =324.1 Pa)

46
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Problem 4.1.40
How does the pressure difference change for the axial CPU fan in Problem 2.2.12, if we install guiding
vanes after the fan that eliminate the circumferential velocity component of the flow at the exit?
(Note that this problem is only a demonstration of the calculation. In reality, CPU fans are never
equipped with guiding vanes, because their efficiency is not the most important parameter. A more
important parameter of CPU fans is noise.)

Solution: The calculation of problem 2.2.12:

(D2-D?)n

T —0.00137 m?

° A”»ng =
® Dppean = 22121 = 0.03425m

® Upean = U1 = U2 = Dpeanmn = 4913 7
® Cuz = Claz = C2az = utan By = 1.788

®qg= nvolAm'ngCam = 0.00184 st

® Wy, = tacg%2 =2.1317%

o Acy =u—wy, =2.782 %
O Aptotal,ideal = PUACU =17.1Pa
* Apiotar = nhAptotal,ideal = 14.5Pa

The guiding vane eliminates the circumferential velocity component, while the axial velocity remains
the same because the continuity equation needs to be satisfied. Using all this information, we can
use Bernoulli’s equation between the inlet and the outlet of the guiding vane:

p

p
50 = P2+ 5(Cor + G5u) =P+ 5 =p3 + CGu

p2 + 5

In the equation above, the index 2 denotes the outlet of the impeller blade, which is the same as the
inlet of the guiding vane; the index 3 denotes the outlet of the guiding vane. From this equation, the
pressure difference p3 — ps can be calculated:
1.25
dp=ps —p2 = 53, = == - 2.782% = 4.838 Pa.
Aptotal,vane = Aptotal + dp = 19.36 Pa.

Problem 4.1.41

The acoustic power in a bus station is P,. = 4.3 mW. Find the acoustic power levell How does the power
level change, if the acoustic power changes to P,c1 = 2P,c, Pac,2 = 5Pac, Pac,3s = 8Py, Paca = 0.1P,.7
(Solution: L,, = 96.33 dB, L, 1 =99.35dB, L, 2 =103.32 dB, L, 3 = 105.37 dB, L, 4+ = 86.33 dB).

Problem 4.1.42

An axial fan, which has no guiding vanes, conveys air at volumetric flow rate Q) = 2 mTS, density p = 1.2 %,

while the static pressure difference is ps; = 120 Pa. Find the total pressure difference, if the diameter of
the pipe is D = 450 mm! Find the useful power! Calculate the efficiency, if the power of the motor is
P;, = 500 W! The speed of the fan is n = 960 ——. Find the sound power level of the fan, using the formula:

min *
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Lw =97410-logo(Q - Aptor - (% —1))+32-log;((*2)(dB). The sonic speed is a = 340 . Draw the velocity
triangles at the tip of the fan! In the calculations, you can ignore the fact that the hub locally increases
the velocity, and the leakage losses and the loss due to the circumferential velocity component can be also
ignored.

(Solution: Apye = 215 Pa, P, = 430 W, n = 0.86, Ly = 77.8 dB, u = 22.62 =, ¢, = 1258 2,
Ac, =7.92 )

Problem 4.1.43

The dryers in a forage dryer facility are spatially separated. The air to the dryers is conveyed by two identical
2

centrifugal fans, that’s performance curve is Apyan tor = 1200 — 300(%)@2. The characteristic curve of

the dyers is Apgryer,tor = 900(%5)@2. Find the volumetric flow rate, is one dryer is connected one fan!

Find the operating point, if two in parallel connected dryers are supplied by (i) two fans in series connection
or (ii) two fans in parellel connection!

3 I’Tl3 m3 m3
(SOhlthIl:Ql =1 s Qseries = 1.706 s 0 Qparallel =2 T)

Problem 4.1.44

The ”snow cannon” of a ski slope is an axial fan, that accelerates air that’s density is p = 1.32 % to
velocity ¢ = 30 . Following the impellers, a mass flow rate of 7 = 4 k?g water is sprayed into the
air, and the water is accelerated to the speed of the air. Find the impulse change of the water! Find
the pressure required to accelerate the water, if the cross-section of the of the fan after the impellers
is A = 0.2 m?. Find the static and total pressure difference, if the air-water mixture exits directly to
the open after the fan! Sketch the static and total pressure along a streamline!

e The watr needs to be accelerated from 0 to 30 m/s; the impulsa change is AI = ri,,¢c = 120 ksgfl .
e This impulse change is coeverd by the pressure difference of the pump: AAp = AI, hence
Ap = 600Pa.

e After the water injection, the average density of the water-air mixture is p,, = QuirfairtQupy —

QaiT“!‘Qwater
2
3%’:@@?2&% 44;1 ” /gs/ ® which is the weighted average of the densities, wieghted by the mass flow

rates. We also have Qi = 30m/sx0.2m? = 6m?/s and Q,, = 4kg/s/1000kg/m3 = 0.004m?>/s.

e The dynamic pressure of the mixture is 894 Pa, see Figure 4.1.

total pressure

|

| 7 ; :
594 Pa i G static pressure
i !
! i
I i
I

| i
suction side ! fan ! mixing chamber | jet
i i

Figure 4.1: Pressure distribution in the ”snow cannon”.
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Problem 4.1.45

The nominal area of the radiator of a car engine cooler is A =
0.12 m?, and it’s loss coefficient is ¢ = 1.2. The performance

curve of the cooling fan is Apy,; = 147(Pa) — 300 - (Pa—S2) Q-

m6
0.3)2. The fan conveys the hot air with density p = 1.1 % from
it’s suction side through the radiator. The outer diameter of
the fan is D, = 310 mm, and the hub diameter is D; = 140 mm.
The air, after it leaves the fan, arrives to the engine space
and slows down, while it’s pressure reaches the pressure of the
ambient air.

Write down Bernoulli’s equation for a stading car, between the
far-field point in front of the radiator and the suctions side of
the fan, and an other Bernoulli-equation between the pressure
side of the fan and the engine space. Using these equations
and the performance curve of the fan, find the volumetric flow
rate! Sketch the static, dynamic and total pressure along a
streamline, between the far field point - suction side and the
pressure-side - engine space!

(Solution: @ = 0.7036 mTa)

Problem 4.1.46

Find the relative pressure needed to support an inflatable tennis court tent, id the are if the tent is 22 x40 m?,
and the mass of the tent is mm = 3000 kg. How long does it take to set up such an inflatable tent, if the
performance curve of the fan we use is Apy; = 70 Pa—42- (le—52> Q? and the average height of the tent is 5
m? The density of the air is p = 1.3 %, the cross-section of the fan at the pressure side is A = 0.2 m?, and
the fan conveys the air between two open spaces! Find the stationary leakage flow rate from the tent, if the

area of the holes on the tent (which ensure a cross flow through the tent to provide fresh air) is 4; = 0.05 m?!
Find the relative pressure in the tent!

(Solution: Ap = 33.4 Pa, t = 1.54 h, v = 0.469 22, Ap,;,, = 57 Pa)



Chapter 5

Control

5.1 Adjusting a desired operating point

5.1.1 Terminology

Consider the problem of setting a desired Q4 flow rate at the pipeline system with head-discharge problem
of H,. If we simply connect a pump to the system, the provided flow rate will not be the desired one but
the the flow rate corresponding to the intersection of the pump and pipeline curve. By controlling either the
pump or the system (via valves), we can achieve the desired flow rate. However, it is typical that either the
Qp flow rate of the pump or the H), head of the pump is not the same as that of the pipeline system

When making decisions on pump or fan control, we use two following important quantities.

Control efficiency. This quantity is the ratio of the useful power and the input power, that is

Puseful o degH.s(Qd)

Pinput B QprgHy(Qp) (5:1)

’[’]:

Specific energy consumption. This quantity is the ratio of the input power and the flow rate, that is

SEC — Pinput  Pinput _ energy consumed
Qg4  V/t  volume of fluid ’

(5.2)
that is, the energy consumption of conveying 1 m?3 of fluid in the system.
We shall analyse three ways of control:

1. Control via a valve connected in series.
2. Control via a valve connected in parallel, i.e. by-pass valve.

3. Control via a changing the pump revolution number.

50
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5.1.2 Valve in series

In the case of series valve control, we add
a throttle valve at the pressure side of the
pump. (And never at the suction side,
due to the danger of cavitation!) As the
three element are now connected in se-
ries, the flow rate is common, while the
pressure will change.

QapgH

The efficiency is n = A
Ppump = HpPQQd/ﬁpump(Qd), hence we
have 77 = Mpump(Qa)Hs/Hp. That is,
the ratio of the system head and the
pump head, multiplied by the efficiency
of the pump at the operating point. The

specific energy consumption is SEC=
ngP(Qd)/npump(Qd)-

This type of control introduces new head
loss at the pressure side, resulting in a
higher overall pipeline loss, which than

, where

H,

A

new pump
operating point

operating point
without control

N pipeline
p| Hel
| valve
: Hs(ystem)
| > pump
Qd(esired)

ol

Figure 5.1: Control via a valve connected in series.

reduces the head of the pump. The power lost on the throttle valve is P, = QqpgH,.

5.1.3 Bypass valve (parallel)

In the case of a bypass valve, we add a
throttle valve parallel with the pump to
allow backflow of unnecessary fluid into
the suction-side reservoir. As the three
element are now connected in parallel,
the flow rate adds up, while the pressure
difference is the same.

The efficiency is n = 9aeofls

pum

where

Ppump = Sngp/npump(Qp>, hence we
have n = npump(Q;v)Qs/Qp That

is, the ratio of the desired flow
rate and the pump flow rate, multi-
plied by the efficiency of the pump
at the pump operating point. The
specific energy consumption is SEC=

ngp(Qp)Qp/Qd/npump(Qp)~

This type of control does not introduce
new head loss, but allows a portion of
the (too large) pump flow rate back to

the reservoir. The power lost on the throttle valve is P, = Q,pgH.

operating point

without control

pipeline

new pump
/ operating point

valve

Qp

Figure 5.2: Control via a valve connected in series.

5.2 Pump revolution number control

A common way of setting pump flow rate is to vary the revolution number. Intuitively, decreasing the pump
revolution number will result in lower flow rate, while increasing it will result in higher flow rate.



Fluid Machinery 52

Combining the affinity laws Q2/Q1 = n2/ni and Ha/Hy = n3/n? give Hy = (H1/Q%) Q% := a Q3. This
simply means that while changing the revolution number, the operating point moves along an central parabola
a@? that starts from the origin and passes through the original point (Q1, H1). The affinity law can be used
only between point lying on the same central parabola.

See the first problem in the next section for a worked example.

5.2.1 Problems

Problem 5.2.47

A pump running at 1470[rpm] with Hpyum, = 45 — 2781Q? head delivers water into a pipeline with Hp;,. =
20 + 1125Q?. Calculate the required revolution number for the reduced flow rate Q' = 0.05[m3/s].

HA pump head Solution:
@n = 1470 rpm

central parabola e The actual working point is given

by the solution of Hpump = Hpipe,
which gives Q = 0.08[m?3/s] and
H = 27.2[m].

pipeline ) )
e Affinity states that while vary-

ing the revolutionary speed, H/n?
and Q/n remain constant. Thus,
also H/Q? remains constant, let’s
denote this constant by a. So,
while varying the revolutionary
speed, the working point moves
along the central parabola (see fig-

Q é* Q Q ure), given by H,, = a Q>

However, as Q' is given and we also know that this point has to be located on the pipeline characteristic, we
know that H' = 20+1125-0.052 = 22.81[m]. Thus, the parameter of the affine parabolais a = H'/Q"? = 9125.

Q* is given by the intersection of the affine parabola and the original pump characteristic: Hg,(Q*) =
Hpump(Q*), which gives Q* = 0.06148[m?/s] with H* = 34.5[m].

Now we can employ affinity between Q* and Q’:

!
0 0.05
_ — 147
e 0> 506148

= 1195.5[rpm)

and just for checking the calculation

/

2 2
1195.5
H = H* (Z) = 345 x o0 = 22.81m).

Problem 5.2.48

Solve the previous control problem (pump: Hpump = 45 — 2781Q2, pipeline: Hpipe = 20 + 1125Q2, desired
flow rate: Q" = 0.05[m3/s]) using a throttle at the pressure side of the pump and also with a bypass line.
Compare the resulting operations in terms of power loss!
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Controlling the revolution speed
60 T T

0.15
3
Q [m>/fs]
Controlling with series throttle valve
60 T T
0.15
3
Q [m>/fs]
Controlling with by-pass
60 T T
50+ .
R 40 \ i
<
0
E 30
£
T 5 Y i
10 .
0 i
0 0.05 0.1 0.15

Q [m3/s]

Problem 5.2.49

A pump, whose characteristic curve is given by Hpump = 70 — 90000[s?/m®]Q?, works together with two
parallel pipes. The main pipe is given by H; = 30 + 100000[s?/m?]@Q?. Calculate the head-flow relationship
H>(Q) of the side pipe, whose opening results in a flow rate of 480[l/min] in the main pipe. The static head
of the second side pipe is 25[m)].

Solution:

e Head of the main pipe at the prescribed flow rate: Q; = 480[l/min] = 0.008[m?/s] — H1(Q1) =
36.4[m]
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The head is the same, so the flow rate of the pump is H,(Q,) = H1(Q1) — Qp = ,/73503060‘4 =
0.0193[m3/s]

e Thus, the flow rate on the side pipe is Q2 = Q, — Q1 = 0.0193 — 0.008 = 0.0113[m3/s]

The actual characteristic of the side pipe: Ha(Q2) = 25+ aQ3 = 36.4jm] — a= %%‘Hgf = 89279

The solution is Ha(Qs) = 25 + 89279Q2.

Problem 5.2.50

Pumps I and IT feed pipes 1 and 2 shown in the figure below. Their characteristics are:

Hy = 45m — 2490052 /m°Q?
Hip = 35m — 32200s% /m°Q?
Hy = 10m + 47305 /m° Q>
Hy = 15m + 8000s? /m°Q?

Find the flow rates and heads if valve ”V” is closed, and if it it opened. 0.023054084926172 (Solution: closed:
H = 31.766 m, Q = 0.02305 ™; open: H = 25.18m, Q = 0.03567 =)

Problem 5.2.51

Two pumps, H; = 70m — 50000s?/m°Q? and Hy = 80m — 50000s%/m°Q? can be coupled parallel or in
series. Which arrangement will deliver more liquid through the pipe H, = 20m +25000s/m°Q?? (Solution:
in series: @ = 0.03224 %, H = 46 m; in parallel: Q = 0.03818 %, H = 56.44 m)

Problem 5.2.52

Pump S, with the characteristitc curve Hg = 37 — 0.159Q?, is feeding an irrigation system consisting of
parallel pipes. The units are Q[m3/h] and H[m]. Each pipe contains at its end a sprinkler. The pipes are
20m long, their inner diameter is 25mm, the friction coefficient is 0.03. The sprinklers discharge 4m3/h
water at 2bar overpressure, their characteristics can be written as H,p, = Ksper.

e Draw the sketch of the irrigation system with 3 parallel pipes!

e How much water is discharged if only one pipe is in operation?
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e How many parallel pipes can be fed if the overpressure before the sprinklers must be 2bar?

(Solution: single pipe: @1 =4.5 %, H = 33.7 m; the pump can supply 2 pipes only)

Problem 5.2.53

The characteristics of a pump supplying a small village with water is H, = 70 — 330Q2. The village network
is modeled by the curve H.q = 25 + 30Q? during the day while the night operation can be described by
H,, =25+ 750Q%. A high water tower is attached to the delivery tube of the pump, its characteristics is
Hr =40 —-55|Q|Q. Here Q is positive if water flows down from the tower. The units in the formulae are [Q]
= m3/s; [H = m. Draw a sketch of the water system. Find the flow rates of the pump, village and tower
both for day and night operation. Find the head of the pump both for day and night! Use a millimeter
paper to draw the charasteristics curves! (Solutions: Qpump = 0.33m3/s and 0.29m3/s; Quillage = 0.6m3/s
and 0.15m3/s; Qrower = 0.275m3 /s and —0.14m3/s. Hpymp = 36m and 41m.)

Problem 5.2.54

How much water is delivered by the pump H, = 70 — 45000Q? through the pipe system Hs = 20 + 20000Q?
? The flow rate must be reduced to 0.015m3/s. This can be done either by throttling control or by using
a by-pass control. Draw the pump-pipe-valve arrangements for both cases. How large is the hydraulic
loss in the valves in the first and in the second case? The power consumption of the pump is Pipur =
9.4 + 240Q — 50000Q%. How large is the specific energy consumption f in the two cases? The units in
the formulae are: [m],[m?/s], [kW]. (Solution: Q = 0.0277 %37 Pl ol = 52 kW, P/ = 4.0 kW,
SEC = 0.237 ¥%b and SEC = 0.285 K respectively.)

m

ypass

5.3 Pumps and pipes connected in series or parallel

In Sec. 3.2, the determination of the operation point of a single pump working to a single hydraulic system
is discussed in details, see also Fig.3.3. In many cases, however, the flow rate Q5 or the head Hy required
by the system cannot be satisfied by a single pump efficiently. Or it is much more feasible economically
(e.g., investment costs) to use several smaller pumps instead of a single much larger one. The pumps can be
connected in a serial or in a parallel way. Each has its own specific application/purpose: increase the flow
rate (parallel) or increase the produced head (serial) when the required pressure difference of the system
is high (e.g., large height differences). The difficulty in both cases is the determination of the equivalent
characteristic curve of the coupled pumps to be able to find the operation point with the system. This is
the main topic of the forthcoming sections. Figure 5.3 shows two pump stations with pumps connected in a
parallel (left-hand side) and in a serial (right-hand side) way. In more complex pump stations, the mixture
of serial and parallel connections of pumps can also be found depending on the technological needs.

From the system point of view, it is also possible that a pump (or a pump station) have to provide flow
rates (and head) to different systems or a single but a complex system. In general, a system might also be
composed by several subsystems built-up by a mixture of serial and parallel connections (similarly to pump
stations), where each subsystem has its own characteristic curves. Again the difficulty is the derivation of
an equivalent characteristic curve of the whole systems.

From sizing point of view, the system of a technology or an industrial project is usually/mainly given, and
the specific needs of the application drive its design. On the other hand, a pump station has to be designed
according to the needs of the given hydraulic systems. Naturally, it might also be possible that modifications
on the system have to be carried out for efficiency reasons, and the complete design is an iterative process.
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Figure 5.3: Pump stations with pumps connected in parallel (left) and in series (right).

5.3.1 Theory of serial connection

In order to intorduce the basics of serial connections, consider two pump connected in series, and working to
a single system. The block diagram of such a configuration is presented in Fig.5.4. Due to the principle of
conservation of mass, the volue flow rate (assuming inclompressible flow) of the three hydraulic elements (the
two pumps and the system) must be equal, and denoted simply by @. In contrast, the head “production”
of the pumps are additive; that is, the overall head of the two pumis is

Hps = Hyy + Hyp. (5.3)

Keep in mind that the head can always be reagarded as presusre difference since H, =~ pgAp,, where p
is the density and g gravitational acceleration. In this sense, the pressure elevated by the first pump is
further increased by the second pump. The overall pressure difference produced by the pumps (sum of the
heads) is completely consumed by the system. This is the basis of operating point introduced in Sec. 3.2.
Mathematically, the solution of the algebraic equation

HP3(Q) = le(Q) + Hp2(Q) = HS(Q) (54)

yields the flow rate @Q° and head H? of the operating point.

Hs,
le?Q Hp??Q Q

Figure 5.4: Block diagram of two pumps connected in series, and working to a single system.

To be specific, the characteritic curves of the pumps and the system is summatized as follows

Hp1(Q) = Ap1 — Bpi@Q* = 80 — 80000Q°, (5.5)
Hpp(Q) = Aps — Bp@® = 40 — 60000Q2,
Hy(Q) = Ay + B,Q* = 60 + 400000Q?,

where the units of the head H and the volume flow rate @ are m and m?3 /s, respectively. The general form
of such charateristic curves via the constants A; and B; are discussed already in Sec.2.2.5 and Sec 3.2; thus,
it is not repeated here. The left-hand side of Fig. 5.5 represents the functions defined by Egs. (5.5)-(5.7) by
the black (pumps) and the red (system) curves.

Tha main task is to unite the two characteristic curves of the pumps in order to determine the operation
point. According to Eq.(5.10), it is simply the summary of the heads. As the characteristic curves are
already expressed for the heads in Egs. (5.5)-(5.7), the overall characteristic curve of the two pumps can be
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Figure 5.5: A typical characteristic curve of a spring-loaded pressure relief valve. Left: the volume flow rate
Qprv as a function of the pressure difference Ap. The theoretical (black) curves are also depicted. Right:
the pressure difference Ap as a function of the flow rate Qprs.

obtained analitically very easily:

HpS(Q) = le(Q) + HpQ(Q)a
= 80 — 80000Q* + 40 — 60000Q?, (5.8)
=120 — 140000Q?,
shown by the blue curve in Fig. 5.5. The operating point of the whole hydraulic sstem is at the intersection

of the blue and the red curves marked by the big black cross. Numerically, the volume flow rate of the
operation point Q° can be calculated by equating the two characteristic curves:

Hp3(Q0) = HS(QO)’
120 — 140000(Q°)? = 60 + 400000(Q°)?,
60 = 540000(Q°)>, (5.9)

60 m?
=14/ =0.01054 —.
@ 540000 0-0105 S

The head of the system cab be claculated by substituting the flow rate of the operating point Q° into
Eq. (5.7):

H? = A, + B,Q?* = 60 + 400000(Q°)* = 104.4m. (5.10)

since the same volume flow rate Q° flows through both pumps, their individual operation point is at the
crossing of the red vertical line at Q° with the charcteristic curves, see the small black crosses in the left-hand
side of Fig.5.5. Again, the heads of the operating points of the pumps can be obtaines by subtitution:

HY = Ay — BpiQ® =80 — 80000(Q°)* = 77.1m, (5.11)
Hpy = Aps — Bpa@Q® = 40 — 60000(Q°)* = 33.3m. (5.12)

With the above-described calculations, all the properties (heads and flow rates) of all the elements of the
whole hydraulic system could be obtained, see also the lables in the left-hand side of Fig. 5.5 pointig to the
projetions to the horizontal and vertical by the red thin lines.

In some cases, it may happen that the characteristic curves are not given in an analitical form; for instance,
only a graphical curve is given in an old catalouge or only some measured points are available. In this
case, there is an alternative, graphical solution to approximate the operating point. The first step is the
division of the volume flow rate range into a discrete set of values represented by the vertical dashed lines
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in Fig.5.5 left. Second, evaluate the pump and the system charaterictic curves at these flow rate values
(see the black and red dots). It is possible that this process is already done by a measurement. Next, the
equivalent charateristic curve of the two pumps can be obtained by summing the values of the heads of the
black dots at a given dashed line, and mark the corresponding point on the same dashed line. The result is
the series of blue dots in Fig. 5.5 left. Drawing (by hand) the approximated charateristic curves through the
calculated dots, the intersection of the blue and the red curves will define the estimated operating point as
usual. Finally, the projection via the thin red lines, the values of the operating heads and flow rates of the
individual pumps and the system can be determined as well.

5.3.2 Theory of parallel connection
5.3.3 Operation point of complex connections

5.3.4 Problems

Problem 5.3.55

The performance curve of a pump is H, = 70 — 10000 Q2. This pump is connected to two pipe systems with

characteristic curves Hy; = 5000 Q2 4+ 10 and 7500 Q% + 15. In these formulae, the head is in meters, and
3

the unit of the volumetric flow rate is *~. Find the operation point, if the two pipe systems are connected

(a) in series, or (b) in parallel to the pump. Draw the performance curves in both cases!

Solution: when the pipe systems are in series connection, the volumetric flow rate through them is the same,
and in the calculation of the performance curves, the heads are summed at each volumetric flow rate. This
means:

Hy gor = Hy + Hgp = 12500 Q* + 25.
In the operation point, the head of the pump equals the head required by the system:

Hs,ser = Hpv
12500 Q2 + 25 = 70 — 10000 Q?,

45 m3
s =1/ ze——= = 0.04472 —,
@ 22500 0.0447 S

H = H,(Qps) = Hy ger = 70 — 10000 - 0.04472% = 50 m.

When the two pipe systems are connected in parallel, the pressure drop/head is the same on them, while
their volumetric flow rates are different. In this case, to calculate the characteristic curve of the total system,
the volumetric flow rates should be summed at each head. To do this, we need to rearrange the performance
curves to be functions of the head:

VI0—H
H,=70-10000Q* - Q, = ~————

100
9VH —10
Hy =5000Q% +10 = Qg = WW
3VH - 15
Hyy = 7500 Q% + 15 — Quo = ‘[T

Note that the expressions above are only valid for a certain H interval, since the argument of the square
root function cannot be negative. Calculating the sum of the two parallel pipes, then equating the pump
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and the system, solving for H, the operating point can be identified:

\/is/H—10+\/§\/H—15 P V70— H

Q&par = Qsl + Qs2 = 100 150 Qp 100
H =20.03 m,

3
Q = 0.07069 %

The performance curves are displayed in Figure 5.6.

system 1 system 2 pump serial parallel

70 T T T T T

H (m)

0 1 1 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Q(m?’/s)

Figure 5.6: Performance curves of the problem. The circles denote the operation points.

Problem 5.3.56

Two pumps, with performance curves Hy,; = 50 — 30000 - Q? and Hpo = 40 — 20000 - Q? are conveying water
through a pipe system that’s characteristic curve is Hy = 3 + 7250 - Q2. Find the operating points if the
two pump are connected (a) in series or (b) in parallel! (Solution: Hger = 14.02 m, Qser = 0.03898 %3,

Hpar = 25.43 m, Qpar = 0.05562 =)

Problem 5.3.57

A pump that’s performance curve is H;(m) = 70 — 50000;—25622, conveys water through a pipe system with
characteristic curve Hq(m) = 20 + 10000;—25(;22. Find the volumetric flow rate! The volumetric flow rate is

increased to @ = 0.032 %3, using a second pump with performance curve Hrr(m) = 80 — 50000;—1@3. The
operating point of the system is set by a throttle valve at the pressure side. How would the loss power be

smaller: if the two pumps were connected in series or in parallel? (Solution: @ = 0.0285 mTS, P!, =545kW,

P!, =9.88 kW)

par
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Problem 5.3.58

Two pump operate in parallel. The performance curve of the first pump and it’s pressure side pipeline is
the following: H,; = 40 — 0.17Q?, Hs 1 = 5 + 0.4Q?; the data for the second pipe is H,rr = 27 — 0.135Q?,
Hg 11 = 0.8Q% The head in in meters, and the unit of the volumetric flow rate is mTS These two pipes are
joined, and convey water through a third pipeline with characteristic curve Hy rrr = —3 + 0.63Q2. Find the

operating point! (Solution: @ = 6.473 mTB, H=234m.)

5.4 Water hammer, hydraulic transients

Up to this point, turbomachinery is discussed from a stationary operation point of view. Such a discussion
have its own right, since most of its lifetime, an installation operates in steady-state fashion. One of the main
reasons is the efficiency: a device is usually designed to operate efficiently over a specific parameter range
around the designed operation point. Thus, a significant deviation from this optimal point can considerably
increase the operating costs or needs expensive additional equipment to overcome this issue. The previous
sections of this chapter are devoted to this problem. Moreover, transient operations are usually causing
greater wear of the elements of a device, which might result in a lower lifetime and additional maintenance
and investment costs.

We shall see in this section that transient phenomenon in a hydraulic system also plays a significant role,
although its timespan is usually many orders of magnitude smaller than steady-state operations. The starting
and stopping of hydraulic machinery are two natural examples. The phenomenon discussed in this section
is the generated pressure surge or wave by the sudden closure of a valve. This pressure wave, having even
tenths of bars peak value, can cause major problems; for instance, the rupture or the collapse of a pipe.
Transients can also be generated in a domestic environment by the sudden close (e.g., within a fraction of a
second if it is allowed by design) of the faucet in the bathroom or the kitchen. The vibration of the pipeline
system for a few seconds and even a small blow at the tap might be observable. Such an effect needs to be
avoided at all costs in industrial environments. Since the peak amplitude of the pressure is usually much
higher due to the much larger mass of liquid involved during the process.

5.4.1 Introduction to the transient phenomenon in pipes

Consider a pipeline in steady-state operation, i.e. with constant flow rate (constant flow velocity). In order
to regulate the flow rate, a valve is placed at the end of this pipe, see the left-hand side of Fig.5.7. Let us
assume a limit case where the valve is suddenly (infinitely fast) closed. Naturally, the huge mass of moving
liquid in the pipe cannot stop immediately; it still moves towards the end of the pipe. However, the fluid
packages at the valve are already stopped. The result is an initiated compression (pressure) wave propagating
along the pipe with sonic velocity (sound speed) a, see the diagrams in Fig. 5.7 below the schematic drawings
of the pipe-reservoir systems. The pressure wave is often referred to as shock wave or positive surge, and its
magnitude (amplitude) is denoted by Ap. This pressure amplitude Ap (flux of momentum) built up in the
system covers the energy required to stop the liquid particles. That is, before the shock front, the liquid is
still moving, while after the shock front, the liquid is already stopped. By analogy, the propagation of the
pressure wave with a finite speed of a is a similar phenomenon as the propagation of a voice in the air via
pressure waves (compression or depression of air). Any information in a system can be transferred only with
a finite speed. Another kind of analogy is when the first wagon of a moving train hits the bumper and stops.
The rest of the wagons, connected by springs, are still moving, and they stop one by one, one after another.
Here, the information (stop of the train) is again propagating with a finite speed along the wagons. Also,
the generated “pressure wave” is a compression wave in a sense that the springs connecting the wagons are
compressed.

Now consider a similar pipeline system, but the valve served to regulate the flow rate is placed at the
beginning of the pipe rather than at its end. The situation is similar to the case described above. The main
domain of liquid is still moving, while the fluid particles at the valve are already stopped (at the moment of
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the closure). The difference is that a depression wave Ap (the absolute value of the pressure is below the
system pressure) is build up that tries to disrupt the fluid particles. The speed of the shock front propagation
a is approximately the same as in case of the compression wave discussed above. According to the train
analogy, the last wagon of a moving train is stopped, while the rest of the wagons are again stopped only
one by one, one after another. However, here the springs connecting the wagons are stretched. That is, the
initiated wave is a depression wave.

sudden sudden
closure closure
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Figure 5.7: Water hammer; sudden closure at the (left) end of the pipe and (right) beginning of the pipe.

In real situations, the infinitely fast closure of a vale cannot be realised. Instead, a valve is closed by a
certain amount of finite time, causing a certain amount of velocity difference (Av) in the fluid flow. That is,
the liquid is not perfectly stopped; only its velocity is changed. In order to achieve the generated velocity
difference, a pressure wave (compression or depression) that provides the energy necessary to decrease the
liquid velocity must be built up in the system. The speed of the propagation of the shock front is still a. That
is, even though the valve is not totally closed, pressure waves with large amplitude can still be presented in
the system.

In order to “feel” how much energy is contained in a fluid flow in a pipeline, consider a typical configuration
of an L = 1km long pipe with a diameter of D = 200mm. Assume that the liquid is water with density
p = 1000kg/m3. The mass of the liquid in the pipe is

D2
m= pLT” ~ 31.4¢. (5.13)

In order to change the velocity of this mass of water by Av = 1 m/s within ¢ = 1s, the required amount of
power is

t o t2
where Ey;, is the kinetic energy difference of the liquid.

P= mAv? = 15.7kW, (5.14)

With the above-described introduction, a quick overview of the phenomenon could be provided. In the rest
of the section, we shall proceed with specific calculations and try to answer the following questions. How
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can the speed of sound a in a pipe or of a pure liquid be calculated? What is the magnitude Ap of the
generated pressure wave? Furthermore, how it is related to the speed of sound a and the velocity difference
Av? Finally, how can we avoid/soften the generation of such a pressure wave?

5.4.2 The sound speed in liquids and in pipes

The propagation of sound (or signal) in any medium is inherently related to the compressibility. In case of
an absolutely rigid material (naturally, this assumption is always hypothetical), the sound speed is infinite.
That is, any disturbance at a point appears immediately at another point of the material. This is the case
for incompressible liquids. Although in many cases, the assumption of incompressibility is a reasonable
simplification, in reality, every material is compressible; therefore, a finite speed of sound exists. From
thermodynamics, it is well-known that the speed of sound can be calculated from the constitutive law
(equation of state) of a substance. For water, the simplest equation of state can be written as

p:poJrEfppr, (5.15)
Po

where p is the pressure, E; is the bulk (elasticity) modulus of the fluid, and p is the density. The subscript
0 indicates a reference point where both the pressure py and the density po are known. Equation (5.15)
expresses a linear relationship between the pressure p and density p. Observe that the density is increasing
with increasing pressure. The second power of the speed of sound can be obtained from the following partial
derivative:
a0 A
dp Ap
expressing how much pressure difference is necessary to change the density by a single unit. Performing the
partial derivative on Eq. 5.15, the speed of sound reads as

a= &z & (5.17)
Po P

If the density does not change much during the compression/depression, pg can be replaced by a simple mean
value of the density denoted by p. For water, the value of the bulk modulus is approximately E; = 2.1 GPa,
the density is approximately p = 1000 kg/m?; thus, the speed of sound for pure water is about a = 1449 m/s.

(5.16)

The above-derived value for sound propagation is valid only for rigid pipes when the elasticity modulus
of the pipe is much higher than that of water. If this is not the case, the speed of sound is significantly
altered. Due to the elevated (decreased) pressure, the diameter of the pipe is increased (decreased) via elastic
deformation. The change in the volume of the pipe acts as if the fluid became more compressible. Note that
due to the change of the cross-section, more fluid can be pushed into the pipe. In order to take into account
the elasticity of the pipe, a reduced elastic modulus FE, is written as

1 1 D
_ l 1
E.  E; + SE,’ (5.18)

where D, § and E), are the diameter, thickness and the elastic modulus of the pipe, respectively. Typical
values for E, are ranging between 600 MPs and 900 MPa. The reduced speed of sound is now defined as

a= |2 (5.19)

Consider a pipe with a diamater of D = 110mm and a thickness of § = 18.3 mm with E, = 800 MPa, the
speed of sound is reduced to a = 354m/s.
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5.4.3 Allievi principle: the pressure amplitde for fast closure

In order to develop sizing equations to avoid water hammer problems, the relationship between the amplitude
of the generated pressure wave Ap and the velocity change Av need to be found. For this, the macroscopic
balances of mass and momentum around the shock front are formulated; and with reasonable simplifications,
the required expression shall be established. Consider a frame of reference (co-ordinate system) moving along
the pipe together with the shock front with speed a. For a better visibility, the related picture in the bottom
of Fig. 5.7 is magnified in Fig.5.8; thus, additional notations can be added without overcrowding the figure.
The vertical dashed line denotes the shock front itself. On the left-hand side of the shock, the pressure
and density are p and p, respectively. The cross-section of the pipe is Aj, where the vector dA; denote
the surface element vector. The velocity at this pipe section is v + a. The addition of a is necessary as
our co-ordinate system is moving with a speed of a. Therefore, the two velocities must be added together.
On the right-hand side of the shock, the pressure and the density are elevated by Ap and Ap, respectively.
Moreover, the velocity of the fluid flow is reduced by Av. The resulted outflow velocity from the investigated
pipe section is v — Av+a. Observe that due to the moving reference frame, the addition a is again necessary.
The cross-section in the right-hand side is A, and the corresponding surface element vector is dAs. Due to
the increased pressure after the shock front (righ-hand side), the cross section As is larger than that of in
the left-hand side A;. The difference is AA = Ay — A; located at the shock front as a ring shaped surface.
Its surface element vector is marked by dAA.

~<«——— moving frame reference with speed a

dAA

dAy | i p+Ap —d>A2
§U+a ,]; ptAap gv—Av—l—a
i shock front
m |,

| >

Figure 5.8: Shock front in a moving frame reference with speed a. The pressure wave is generated by a
sudden closure of a valve at the end of the pipe.

From elementary fluid dynamics, it is well-know that the macroscopic momentum balance for the fluid
package bounded by the red dashed line in Fig.5.8 in an integral form reads as

aat/v(pv) dV+/Apy(y~dA)+/Apd4=/Vpng. (5.20)

This integral equation express that the momentum of the bounded fluid package can be changed by forces
acting on the bounding surfaces (e.g., pressure, inertia) and on the volume (e.g., gravity). In this equation,
v denote the velocity vector at a given point on the surface or in the volume in general. In the moving frame
co-ordinate system, the fluid flow is stationary; thus, the first integral is identically zero. Moreover, let us
neglect the effect of gravity; consequently, the last integral in the right-hand side of Eq. (5.20) is zero as well.
The simplified equation is

/Apy(y~dA)+/ApdA:O. (5.21)

Observe that in the surface integrals, the surface elements dA are vectors, and they are pointing in the
outward direction (by convention). In general, performing the integrations in Eq. (5.21) is a cumbersome
task. However, assuming that the velocity vectors are constants (using the mean velocity at every point of
the cross-sections) and that they are always perpendicular to the cross-sections, the integrations can be done
by elementary calculations. That is, they become simple multiplications of the magnitude of the integrands
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and the area of the surfaces. It must be stressed that the proper sign of the vectors has to be taken into
account. Demonstrate this with an example:

[ pleda) = —p(o+a A (5.22)

The magnitude of general velocity vector v is v + a at cross-section A;. Let the positive direction denoted
by z, see Fig.5.8. As the surface element vector dA, is pointing to the negative direction, the value of the
integral is negative. Keep in mind that the second power of the velocity vector is always positive regardless
of its actual direction. Performing all the integrations in Eq.5.21 in a similar way for the surfaces A;, A
and AA, the following algebraic equation can be formulated

—p(v+a)?A1 + (p+ Ap) (v — Av +a)? Ay — pA; — (p+ Ap)AA + (p+ Ap)Ay = 0. (5.23)

Through the surface AA, there is no fluid flow. That is why there is only a pressure-related term associated
with this surface. Taking into account that AA = A; — A; the above equation simplifies to

—p(v+a)?A1 + (p+ Ap)(v — Av + a)? Ay + ApA; = 0. (5.24)

With the help of the continuity equation (conservation of mass)

Min, = Mout, (5.25)
plv+a)Ad; = (p+ Ap)(v— Av+a)A,, (5.26)

Eq. (5.24) is transformed into
—p(v+a)?A; + p(v+a)A; (v — Av +a) + ApA; = 0. (5.27)

This equation can be further simplified to
—p(v+a)A1Av+ ApA; = 0. (5.28)

Eliminating A; and assuming that the sound speed a (orders of hundreds of m/s) is much larger than the
flow velocity (orders of m/s), the well-known formula for the Allievi principle can be formulated:

Ap = palv. (5.29)

The simple equation of Eq. 5.29 expresses that a sudden change in the velocity Av (not necessarily a complete
stop of the fluid) initiate a pressure wave with an amplitude of Ap. Let us assume that the sound speed is
a = 350m/s, the density is p = 1000 kg/m?® and the velocity change is Av = 1m/s. The generated pressure
amplitude is approximate Ap = 3.5 bar.

5.4.4 Pressure amplitude for slow closure

Intuitively, one can “feel” that during a prolonged closure of a valve, the amplitude of the compres-
sion/depression waves can be softened. However, Eq. (5.29) is independent from time. Therefore, the validity
limit of Eq. (5.29) has to be determined. As it is already discussed in details in Sec. 5.4.1, the initiated pres-
sure wave travels along the pipe. At the other end of the pipe, the pressure wave is reflected and travels back
to the valve. During the reflection, the compression wave becomes a depression wave or vice verse. It can be
fairly assumed that during the time needed to the pressure wave travelling back and forth, the transient is
decayed enough, and a new stationary operation is settled down. This means that Eq. (5.29), which defines
the pressure amplitude of transients, is valid only if the closure of the valve is faster than the characteristic
time T}, of the pipe (time needed for the pressure wave travelling back and forth). The value of T, can be
easily calculated from the length of the pipe L and the speed of sound a:

)

T, = (5.30)

a
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If the time of the closure T, of the valve is smaller than T}, transient phenomenon takes place, the Allievi
principle is valid, and the pressure amplitude can be calculated from Eq. (5.29). Otherwise, the liquid mass
in the pipe slows down via quasi-steady states and Newton’s second law has to be used:

dv
F=m— 5.31
mlt (531)
d

ApA = pLAZY. (5.32)

dt

Simplifying with the cross-section A of the pipe, the pressure difference yields
d A

Ap=pLY ~ pr2Y (5.33)

e T AE
As an example, let us assume a pipe length of L = 1000 m, and that the speed of sound is a = 1449 m/s
(rigid pipe wall). Thus, the characteristic time of the pipe T, = 2L/a = 1.38s. Furthermore, assume that
the velocity difference is Av = 1m/s, the density is p = 1000 kg/m® and the closure time is T, = 2s > T,.
Applying Eq. (5.33), the generated pressure amplitude is Ap = 5 bar.

5.4.5 Dangerous consequences of the pressure waves

The pressure amplitude computed either by Eq. (5.29) or Eq. (5.33) must be superimposed to the actual
system pressure either in the positive direction (compression wave/shock wave, left-hand side of Fig.5.7)
or in the negative direction (depression wave, right-hand side of Fig.5.7). It must be stressed that both
transient and quasi-steady cases are dangerous, see the pressure amplitude calculations of typical examples
in Sec.5.4.3 and Sec.5.4.4. Moreover, both the compression and depression waves can also be dangerous.
Assume that the system pressure is 5bar and the pressure amplitude is 12bar. If the pressure wave is a
compression wave (valve closure at the end of the pipe, see Fig.5.7), the pipe system has to withstand an
elevated peak pressure level of 5 + 12 = 17 bar, which can easily result in a pipe burst. On the other hand,
when the wave is a depression wave (valve closure at the beginning of the pipe), the theoretical minimum
pressure would be 5 — 12 = —7bar. This is not possible as the liquid/water will evaporate (cavitate),
and some sections of the pipe will be filled up with vapour preventing the pressure to drop down below
the absolute vacuum. Later on, when the large mass of liquid stops and starts to move back towards the
valve (e.g., because the pipe has a slightly positive incline), a large mass of liquid will hit the valve and
its surroundings. Also, the pipe can collapse due to the vacuum as shown in the left-hand side of Fig. 5.9
(especially with large diameters). Examples for serious damages are shown in Fig.5.9 for depression wave
(left-hand side) and compression wave (right-hand side).

Figure 5.9: (Left) collapsed expansion joints due to depression wave. (Right) pipe burst due to chock wave
(compression wave).
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5.4.6 Summary and prevention of water hammer

Before the discussion of techniques to avoid water hammer phenomenon, let us summarize the findings of
the previous sections via some bullet points:

e Closure of valves results in pressure waves Ap due to the change of the velocity of the fluid flow. In
this sense, any “action” causing a velocity difference can also cause pressure waves (e.g., starte and
shut down of pumps). Sometimes the phenomenon is related to a complicated interaction of devices;
for example, the sudden closure of a check valve (prevent backflow of the liquid) during the shut down
of a pump.

e The speed a of the propagating pressure wave depends on the equation of state of the liquid and the
material properties of the pipe.

e If the closure time T is smaller than the characteristic time of the pipe 7}, the pressure amplitude is
obtained from the Allievi principle Eq. (5.29); otherwise, it can be calculated from Newton’s second
law Eq. (5.33).

e Both the compression and depression waves are dangerous for the system. However, due to the possible
cavitation effect and the collapse of the pipe (especially for large diameters), the depression wave is
usually more dangerous.

As water hammer is an undesirable phenomenon, many techniques have been developed to avoid its harmful
consequences. Let us summarize them again via some bullet points:

e Keep the fluid velocity low. The smaller the possible velocity difference, the smaller the generated
pressure amplitude.

e Close the valve, shut down or start the pump slowly or in a controlled manner.

e Use air vessels that are large tanks half-filled with air. The highly compressible gas inside can signifi-
cantly soften the pressure waves. That is, it acts as a “shock absorber”. The disadvantage is the high
investment costs.

e Air valves are often used to remediate the consequences of low pressure in a depression wave by releasing
air into the pipe. Thus, the pressure inside the pipe cannot be lower than the ambient pressure of the
environment. Moreover, the air also cushions the effect when the large mass of liquid starts to move
backwards and tries to hit the valve or the pump, see the discussion of the previous section.

5.4.7 Problems

Problem 5.4.59

The diameter of a pipe is NA150, the volumetric flow rate us QQ = 44 %37 the relative pressure in the pipe is
5 bar, and the sonic velocity is @ = 1200 %}. Find the amplitude of the pressure wave, in case when the pump
at the beginning of the pipe suddenly stops! The flow velocity reaches zero faster than the characteristic
time of the pipe, therefore Allievi’s theory can be used. Is cavitation possible in the pipe? For the same
volumetric flow rate, find the diameter of the pipe, at which cavitation is no longer possible!

Solution:

Allievi’s theory states that

Ap = palAv.
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The velocity of the fluid in then pipe is

Q 4Q 4-44 oo ™
T A D2xr 0.15%2-w-3600 s

The amplitude of the pressure rate is given by
Ap = 1000 - 1200 - 0.69 = 828000 Pa = 8.3 bar.

Knowing the amplitude of the pressure wave and the relative pressure in the pipe, the smallest relative
pressure possible in the pipe is 5 — 8.3 = —3.3 bar. This is impossible, the smallest relative pressure possible
is —1 bar. Below 0 bar relative pressure, cavitation is possible. To avoid this, the required pipe diameter is

/ 4.44
1 12 =0.1
\/OOO 00 - 5105~ 3600 =0.193 m

Therefore, with an NA200 pipe, caviation can be avoided when the pipe is closed faster than the characteristic
time of the pipe.

Ap = palAv = pa

Problem 5.4.60

During the reconstruction of a water pipe, the old asbestos cement (AC) pipe is changed to a steel pipe.

The sonic speed is aac = 920 % and agiee; = 1200 % in the asbestos cement and steel pipe, respectively.

m

The velocity of the fluid is 0.7 %, and the pressure is p = 7 bar. Find the amplitude of the pressure wave
for both pipes, assuming the end of the pipe is closed fast (under the characteristic time)!

(Solution: AC: dp = 6.44 bar, pya. = 13.44 bar. Steel pipe: dp = 8.4 bar, pya. = 15.4 bar)

Problem 5.4.61

A NA200 pipe that’s length is 8 km, conveys water to an open reservoir. The volumetric flow rate is
@Q = 3600 mm, and the end of the pipe is above the water level of the reservoir. The friction factor is
A = 0.018. Find the pressure at the beginning of the pipe! Assuming that the velocity decreases linearly in
time, find the ratio of the characteristic time of the pipe and the time under which the valve at the pressure
side of the pump can be closed! The criteria is that the pressure cannot be lower than the atmospheric
pressure! The sonic speed is a = 1200 **. Find the characteristic time of the pipe! Plot the velocity of the
fluid as a function of time!

(Solution: p = 13.13 bar, % = 1.75, Tepar = 13.33 )




Chapter 6

Positive displacement pumps

/noteadded from Volumetric Pumps and Compressors

6.1 Introduction

6.1.1 Pumps - general introduction

A pump is a machine that moves fluids (mostly liquids) by mechanical action. Pumps can be classified into
three major groups according to the method they use to move the fluid:

Centrifugal pumps are used to transport fluids by the conversion of rotational kinetic energy to the
hydrodynamic energy of the fluid flow. The rotational energy typically comes from an engine or
electric motor. The fluid enters the pump impeller along or near to the rotating axis and is accelerated
by the impeller. Common uses include water, sewage, petroleum and petrochemical pumping.

Positive displacement pumps have an expanding cavity on the suction side and a decreasing cavity on
the discharge side. Liquid flows into the pumps as the cavity on the suction side expands and the
liquid flows out of the discharge as the cavity collapses. The volume is constant given each cycle of
operation.

Miscellaneous pumps are the rest of the pumps, such as Eductor-jet pump, airlift pump, etc.

Pumps operate by some mechanism (typically reciprocating or rotary), and consume energy to perform
mechanical work by moving the fluid. Pumps operate via many energy sources, including manual operation,
electricity, engines, or wind power, come in many sizes, from microscopic for use in medical applications to
large industrial pumps.

Mechanical pumps serve in a wide range of applications such as pumping water from wells, aquarium filtering,
pond filtering and aeration, in the car industry for water-cooling and fuel injection, in the energy industry
for pumping oil and natural gas or for operating cooling towers. In the medical industry, pumps are used
for biochemical processes in developing and manufacturing medicine, and as artificial replacements for body
parts, e.g. the artificial heart.

The two most important quantities characterizing a pump are the pressure difference between the suction
and pressure side of the pump Ap and the flow rate delivered by the pump Q. For practical reasons, in the
case of water technology, the pressure head is usually used, which is pressure given in meters of fluid column:
H = %. Simple calculations reveals that for water 1 bar (10°Pa) pressure is equivalent of 10 mwc (meters
of water column).

68
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Figure 6.1: Two examples of pumps: (left) centrifugal pump (right) positive displacement pump (piston
pump)

Turbopumps

In the case of a turbopump, a rotating impeller adds energy to the fluid. The head is computed with the
help of Euler’s turbine equation

CoyU2 — C1yU Coul
o= 2ut2 Tuttl _ 2ut2 (61)
9 Clu=o 9

while the flow rate is
Q = Dombacom, (6.2)

with ¢, and ¢y, being the circumferential component of the absolute velocity at the outlet and inlet,
respectively, u; = Dymn and ug = Damn the circumferential velocities. ca,, stands for the radial (meridian)
component of the absolute velocity at the outlet, D is diameter and b stand for the width of the impeller.
(See Figure 6.2 and Fluid Machinery lecture notes for further details.)

Figure 6.2: Velocity triangles on a centrifugal impeller.

Notice that the head (H) and flow rate (Q) are provided by the two component of the same velocity vector cs.
Thus, if H increases, () decreases and vice versa. Thus in the case of turbomachines the pressure difference
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and the flow rate are directly connected and not independent. This dependency is described by the pump’s
performance curve, see Figure 6.3.

H,n
design point
HOpL ---------
| O nQ
| HQ)
Qopt. Q

Figure 6.3: Turbopump performance curves

An important quantity describing the shape of the impeller of a turbopump is the specific speed n,, defined
as

Qi/Q. 3/s 1/2
| I o

The dimension (unit) of n, is not emphasised and mostly omitted. The concept of specific speed can be used
to determine the pump type (i.e. radial/mixed/axial) which is capable of performing a pumping problem
efficiently.
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Figure 6.4: Turbopump performance curves

Example 1. We have to pump clean water to an upper reservoir at 60 m height. The nominal power of
the driving electric motor is 5 kW, its revolution number is 3000 rpm. The flow rate is (assuming 100%
efficiency)

Pmotor Pmotor -3 3 .
Pootor =Ap-Q > Q = —— =—"= =849 x 107 m"> /s = 5091/min 6.4
t = /s =500/ (6.4)
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Hence the specific speed is

1/2 _3\1/2
0 8.49 x 10

ng=n Q;;Z _ 30004 7 )~ 12.8, (6.5)
opt. ( 0)

which means that a centrifugal turbopump is suitable for this problem.

Example 2. Now consider the hydraulic cylinder depicted in Figure 6.5. The required pressure difference
is now Ap = 200bar = 2 x 107Pa, the power and the revolution number of the driving motor is the same as
before (5kW, 3000rpm).

P
n

AN

AN

Figure 6.5: Simple sketch of a hydraulic cylinder

First, find the flow rate of the pump (again, assume 100% efficiency):

Pm r — . .
Q= pgo.;; = 981%00;)000 = 2.55 x 107*m?3 /s = 15.3 liter /min, (6.6)

which gives

1/2 —4\1/2
2.55 x 10
ng=n Qopt. _ 3000( ) 0.16. (6.7)
q 3/4 3/4
opt. (2000)

Comparing this value with Figure 6.4 we see that this value is ’off’ the chart. Such a small n, value
would require an extremely large-diameter impeller, which is very thin. Besides the problems with the
high centrifugal stresses, from the fluid mechanical point of view, such a thin impeller introduces extremely
large fluid friction resulting in poor efficiency. Thus we conclude that pumping problems resulting in
high pressure difference and low flow rates (i.e. n, < say,10) cannot be efficiently solved by
centrifugal pumps.

Positive displacement pumps

Positive displacement pumps (PDPs) are typically used in high-pressure (above Ap > 10bar, up to 1000-2000
bars) technology, with relatively low flow rate. These machines have an expanding cavity on the suction side
and a decreasing cavity on the discharge side. Liquid flows into the pumps as the cavity on the suction side
expands and the liquid flows out of the discharge as the cavity collapses. The volume is constant given each
cycle of operation.

The positive displacement pumps can be divided in two main classes (see Figures XXX)

e reciprocating
— piston pumps
— plunger pumps

— diaphragm pumps

axial/radial piston pumps
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e rotary

— gear pumps

— lobe pumps

— vane pumps

— progressive cavity pumps
— peripheral pumps

— screw pumps
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Figure 6.7: Some rotary pumps
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PDPs, unlike a centrifugal pumps, will produce the same flow at a given motor speed (rpm) no matter the
discharge pressure, hence PDPs are constant flow machines. A PDP must not be operated against a closed
valve on the discharge (pressure) side of the pump because it has no shut-off head like centrifugal pumps:



Fluid Machinery 73

a PDP operating against a closed discharge valve will continue to produce flow until the pressure in the
discharge line are increased until the line bursts or the pump is severely damaged - or both.

A relief or safety valve on the discharge side of the PDP is therefore absolute necessary. The relief valve can
be internal or external. The pump manufacturer has normally the option to supply internal relief or safety
valves. The internal valve should in general only be used as a safety precaution, an external relief valve
installed in the discharge line with a return line back to the suction line or supply tank is recommended.

Several types of PDPs can be used as motors: if fluid is driven through them (e.g. gear pump), the shaft
rotates and the same machine can be used as a motor.
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6.1.2 Basic characteristics of positive displacement machines

The pump displacement V, is the volume of the liquid delivered by the pump per one revolution, assum-
ing no leakage (zero pressure difference between the suction and pressure side) and neglecting the fluid
compressibility. The ideal — theoretical — flow rate is

Qi =1V, (6.8)

where @y, is theoretical flow rate (liter/min), n is the revolution number of the pump shaft (rpm) and V
stands for the pump displacement, (cm?).

In the case of pumps, the actual outflow is less than the theoretical flow rate, due to the leakages inside
the pump. These losses are taken into by the volumetric efficiency Nyor: @ = Mvol@th = Mvoi M Vg. Other
types of losses (sealing, bearing, fluid internal and wall friction) are all concentrated into the so-called
hydromechanical efficiency npm,, which connects the input and output power: P;,np;m = Poyut. For pumps,
P, = Mw and P,,; = QAp. We have:

2n M Nhm
Nhm M 20 = nVynot Ap = APpump = Ve oo (6.9)
N Q

In the case of motors, the input power is hydraulic power (P, = QAp) and the output is rotating mechanical
power P,,; = Mw. Due to the internal leakage, one has to ’push’ more fluid into the pump to experience
the same revolution number, hence Q = Qth /Mot > Qtn. We have:

nV, 2 M Myor
Nhm Togl Ap = MQZTL - Apmotor = va "7;% (610)
\Q‘,_./ Pout
Pin

theoretical @ n,

H(~Ap) T pump @n, pump @ ny,
motor @ n, motor @ n,
n2<n1
o
re
Q

Figure 6.8: Pump and motor performance curves for two different revolution mubers.

We conclude that for both pumps and motors,

(6.11)
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Which means that the pressure and the flow rate are independent for a given machine. The same behaviour
can be observed on the performances curve of these machines, see Figure 6.8. The theoetical performance
lines are vertical for a given revolution speed, meaning that the theoretical flow rate does not change when
varying the pressure.

However, the leakage flow rate through 