
Impedance method 
 
1. Basic theory 
 
We start from the one dimensional continuity and momentum equation. The convective terms 
are neglected in both equations. We denote the sum of the static pressure pst and hydrostatic 
pressure ρgh   by  p.  

ghpp st ρ+= , 
thus the basic equations are: 
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We consider only periodic flows. The average values of pressure and velocity are denoted by 
p and v  and the periodic parts by p´ and v´. 
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The average values are defined by the time integrals:  
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In order to substitute (3) into (1) and (2) one has to differentiate the pressure and velocity.  
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The derivatives with respect to time are similar. By Eqs. (4)  
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The average values are solutions of Eqs. (1), (2) because they represent the unperturbed case:   
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Further, we suppose that the velocity perturbation is much smaller than the average value: 
vv <<′ . Then we can neglect v′ 2 in the turbulent friction term:  
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Substituting (5) – (9) into (1) and (2) we get:  
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The dimension of resistance R is s-1.  
By differentiating one of Eqs. (10) and (l1) with respect to time t, the other one with respect to 
x and subtracting the second from the first results in equations which contain only p’ or v’.  
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The similar equations are both solved by Fourier’s separation method. This will result in 
complex pressure and velocity perturbations: Naturally, only the real part has physical 
meaning. ( 1−=i ) 
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Putting this into (11) and integrating over the pipe length x we get 
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In the above equations ω is the frequency of excitation, A and B will be determined by the 
boundary values, γ is called propagation constant. By substituting (12) and (13) into (10) we 
get: 
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As a new parameter the hydraulic impedance is introduced, it is the ratio of pressure 
perturbation p′ and velocity perturbation v′: 
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The first brake is called characteristic impedance Zc:  
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The hydraulic impedance Z(x) depends only on the space coordinate. At the upstream end of 
the hydraulic element,  Zu = Z(x=0). At the downstream end Zd = Z(x=L). 
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The coefficients A and B can be expressed with the pressure and velocity perturbation at the 
upstream end of the hydraulic element. Putting x = 0 into (12) and (13) one has 
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These give for A and B  
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The perturbations over the length of the element are now:  
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Using these equations we find a relation between the upstream (Pu, Vu) and downstream values 
(Pd, Vd) of perturbations.  
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Using (l4)-(l6) and Eqs. (18), (19)  the hydraulic impedance Z(x) can be written as:  
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With vector notation and putting x = L one has: 
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The matrix is called impedance matrix. The resulting impedance matrix of hydraulic elements 
connected in series is the product of the impedance matrices of the individual elements. 
The following expression connects the impedances at the upstream and downstream ends of the 
element: 
 

L
Z
Z

LZZ
Z

c

u

cu
d

γ

γ

tanh1

tanh

−

−
=     and   

L
Z
Z

LZZ
Z

c

d

cd
u

γ

γ

tanh1

tanh

+

+
= ,    resp. 

 
2. Boundary conditions 
 
Some simple cases are studied where either the upstream or the downstream impedance (Zu or 
Zd) can be found easily.  
The pressure perturbation is zero if the downstream pressure has a fixed constant value 
(open end to the atmosphere or a liquid tank with constant surface)  
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Closed end of a pipe, the velocity perturbation is zero, thus  
∞=dZ  

Dividing or combining pipes (or other hydraulic elements) results in a boundary condition 
where the pressure perturbation is common for all connected elements and continuity is 
fulfilled. For elements k being connected (k=1,2,...,K): 
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Supposing constant liquid density in elements having cross sections Ak gives:  
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with the sign function (inflow is positive, outflow is negative). By definition 
k

k Z
p

v
′

=′ . 

Continuity must be fulfilled for the mean velocities v  too thus 
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The fact that the velocity is proportional to the square root of pressure difference in turbulent 
flow is used to formulate the impedance of a throttle valve in a pipe:  
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It is well known that 
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μ is the discharge coefficient. 
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From here after dropping v  on both sides 
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as there is no change in the velocity perturbation through the valve.  
In vector-matrix form with the conventional notations 
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The matrix has real elements thus there is no phase shift between the velocity and pressure 
variation through a valve.  
Now we formulate the excitation as a boundary condition. Both velocity and pressure 
excitation can be handled in a similar manner. Let’s see the velocity excitation. If the real 
velocity excitation is a sinusoidal vibration with angular frequency ω and amplitude Ao: 
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As a further step we define the impedance of a turbopump. In the figure below we see the 
characteristics of the pump and the system intersecting each other in the working point. The 
pump characteristics may be approximated by its tangent in the working point. 
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This tangent has the equation: Q
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characteristic curve in the working point can be determined graphically or numerically. Once 
this has been done the head and flow rate can be expressed by the pressure and velocity. 
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Finally we suppose that the velocity doesn’t change spatially through the pump: ud vv =  
which holds also for the perturbed values: ud vv ′=′ . 
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The terms underlined are equal as they represent the steady state working point. Thus; if we 
now denote the perturbances by upper case letters as before, we have 

uuuudud VKvKvDgBppPP ⋅−=′⋅−=′⋅







−=′−′=−

4

2πρ . 

In matrix form: 









⋅






 −
=









u

u

d

d

V
PK

V
P

10
1

    (27) 

Or the connection of impedances of a pump is 
KZZ ud −= .    (28)  

Surge tank 
 
The pressure above the free surface in the surge tank is not perturbed; it is the constant 
atmospheric pressure p0. The steady state liquid height is H0, it is perturbed, the varying water 
level h’ is measured from H0. The cross sectional area A of the surge tank is constant along its 



length. The velocity perturbation throughout the tank is v’, it is equal to the derivative of h’, 
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The actual water depth in the tank is ∫ ′−=′+=
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In the introduction we have defined the pressure as ghpp st ρ+= , thus 
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This result shows that there is a 90° phase shift between the pressure and velocity perturbation 
at tank bottom. 
The surge tank cross sectional are will be considered when the tank is attached to one or more 
pipes with much smaller cross sections, remember (21).  
 
Example 
 
A surge tank of A1 = 10 m2 cross section feeds a frictionless pipe of length L and cross section 
A = 1 m2 with water.  
At the downstream end of the pipe another surge tank of cross section A2 =20 m2 is located. 
Let’s find the resonance frequencies of this system for varying pipe lengths. The impedance of 

the tank bottom is (see 30) 
ω
ρgiZ =1 . This point is attached to the upstream end of the pipe. At 

this junction the flow directions are equal, thus (see 21) 
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The downstream impedance of the frictionless pipe can now be computed. The propagation 

factor for frictionless flow is 
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With these (see above on page 3)  
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the identity of complex arithmetic: ( ) ( )yiiy tantanh = . 
The impedance of the bottom of the second surge tank is now because of opposite flow 

directions in pipe and in tank 
A
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The waterfall diagram below shows the axonometric view of the Z  surface above the ω – L 
plane. 

 
 

Waterfall diagram of a simple tank-pipe system 


