
Open channel flow – weir rupture 
 

A long rectangular channel of constant cross section is divided into two parts by a thin weir. The 
longitudinal coordinate is denoted by x. The weir is located at x = 0. In the left (L) and right (R) 
channel parts the water depths are y(x<0, t < 0) = yL and y(x>0, t < 0) = yR resp. The water velocity 
is zero v(x<0, t < 0) = 0 = vL, v (x>0, t < 0) = vR = 0 in both channel parts for t < 0. The width of the 
channel may be set to b = 1m. 
At t = 0 the weir is suddenly bursting. A flood wave will travel to right and the water depth will fall 
in the left channel part. Water will stream from left to right, thus the stream velocity will rise in the 
middle region but it remains zero in the undisturbed parts. The flood wave is an abrupt change in 
water depths; the falling wave has a continuous shape. 

 
Fig.1 Water depth and velocity after weir rupture 

 
1. Flood wave Az itt következők magyarul olvashatók álló vízugrásra a “Vízugrás-
lökéshullám” előadásvázlatban 
The flood wave can be approximated by a water jump of finite height difference but zero extension. 
This flood wave travels with velocity w to the right. On the right hand side of the flood wave the 
water depth remains yR, left of the wave the water depth is y2 (see the figure above). By considering 
a moving control volume around the water jump the flow will be stationary. We can write the 
conservation of volume and momentum for the control volume. 
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Introducing the abbreviation 
Ry

yY 2= for the depth-ratio across the water jump Eq. (1) gives 
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RR agy = , Ra being the wave celerity in 

the right channel part. Solving for Y the well known formula for a stationary water jump results: 
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2. Region 2 between the fan and the flood wave 
The water fall in the wave moving to the left occurs in the form of a fan (see Fig. 2). As the wave 
celerity in region L is higher than in region 2 the top of this wave travels faster than its bottom, the 
wave gets more and more flat during its movement. The fan is bordered by two C- characteristics, 

their tangents in the x-t plane are LL
L
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1C characteristics run in the region 1 of the fan between the two borders. From the St-Venant form 
of the MOC 11 2av +  is constant along the C+ characteristics. Thus: 
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Eqs. (3)-(5) are three equations for the three unknowns v2, w and Y containing the depth ratio 

parameter 
R

L

y
y . A convergent iteration procedure in form (6) may be found. As a starting value Y=1 

can be set. 
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A good power function fit is  
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in the range 102,1 ≤≤
R

L

y
y  with R2 = 0,9994. For given yR values v2 and w can be approximated too 

using Eq. (5) then Eq. (3). 
 
3. Fan of falling water 
Along a CL

+ characteristics entering from region L into the fan  
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as vL = 0. Thus    constant2 11 =+ av .        (8) 
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Adding and subtracting Eqs. (8) and (9) we find that constant1 =v  and constant1 =a  separately. 

This means that constant11
1

=−=
−

av
dt
dx  or 

t
xav =− 11 ,       (10) 

the C1
- characteristics are straight lines. Substituting 1a  from Eq.(7) 
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Naturally the water depth is given by 
g
ay

2
1

1 = .      (13) 

In equations (11) and (12) the interval of validity for 
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completes the solution for the fan. Finally the Froude number distribution can also be computed. 
 
4. Critical water depth ratio 

Programming above equations and running the program with different 
R

L

y
y ratios one can observe 

that the inclination of the right border C2
- of the fan can be negative or positive. It is interesting to 

find the critical 
R
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y
y ratio for which the right border is identical with the t-axis (x=0 for all right 

border points of the fan). 
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Putting this into (6) gives after some calculations a qubic equation for the critical value of Y: 
013 23 =+−− YYY . The physically relevant solution is Ycr = 3,21432. Finally from (14) 
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5 Net of characteristic lines 
For a subcritical water depth ratio the C+ and C- characteristic lines, the fan and the water jump 
location are shown below. 
 



 
Fig. 2 Characteristic lines for sudden weir rupture 
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