Open channel flow — weir rupture

A long rectangular channel of constant cross section is divided into two parts by a thin weir. The
longitudinal coordinate is denoted by x. The weir is located at x = 0. In the left (L) and right (R)
channel parts the water depths are y(x<0, t < 0) =y, and y(x>0, t < 0) = yg resp. The water velocity
is zero v(x<0,t< 0) =0 =v, v (x>0, t <0) = vg = 0 in both channel parts for t < 0. The width of the
channel may be setto b = 1m.

At t = 0 the weir is suddenly bursting. A flood wave will travel to right and the water depth will fall
in the left channel part. Water will stream from left to right, thus the stream velocity will rise in the
middle region but it remains zero in the undisturbed parts. The flood wave is an abrupt change in
water depths; the falling wave has a continuous shape.
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Fig.1 Water depth and velocity after weir rupture
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The flood wave can be approximated by a water jump of finite height difference but zero extension.
This flood wave travels with velocity w to the right. On the right hand side of the flood wave the
water depth remains yg, left of the wave the water depth is y, (see the figure above). By considering
a moving control volume around the water jump the flow will be stationary. We can write the
conservation of volume and momentum for the control volume.

Continuity: —1-yw=1-y,(v, —w). (1)

Conservation of momentum: —p-1-y,(v, —w)’ = p-1- yo (- W)’ + pg[%l- Y, —y—le- yR) =0. (2)

Introducing the abbreviation Y = Y2 for the depth-ratio across the water jump Eq. (1) gives

Yr
Vv, = Wu . (3)
Similarly from Eq. (2) we get v, :gzﬁ(Y2 —1) . (4)
W

Equating these and dropping (Y-1) gzi(Y +1):$. Here gy, =a?2, a,being the wave celerity in
W

the right channel part. Solving for Y the well known formula for a stationary water jump results:
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2. Region 2 between the fan and the flood wave

The water fall in the wave moving to the left occurs in the form of a fan (see Fig. 2). As the wave
celerity in region L is higher than in region 2 the top of this wave travels faster than its bottom, the
wave gets more and more flat during its movement. The fan is bordered by two C characteristics,

dx
=v,—a_and C : pry =v, —a,. Here the wave
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speeds a, =,/gy, and a, =./gy, are used.

C/ characteristics run in the region 1 of the fan between the two borders. From the St-Venant form
of the MOC v, +2a, is constant along the C* characteristics. Thus:

vV, +23 =V, +2a, =v2+21/gy2 =V, +2 gyRﬁ
y

their tangents in the x-t plane are C, :

= v, +2a,~/Y . However in our case v, =0 thus
R
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+~/Y . From this v, can be expressed:

v, {\E —sz Vs - (5)

Egs. (3)-(5) are three equations for the three unknowns v,, w and Y containing the depth ratio

parameter Yo A convergent iteration procedure in form (6) may be found. As a starting value Y=1
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can be set.
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A good power function fit is
0,6164
= 0,9482-(LJ (6/a)
Yr

in the range 1,2 < Yo <10 with R? = 0,9994. For given yg values v, and w can be approximated too
Yr

using Eq. (5) then Eq. (3).

3. Fan of falling water
Along a C.* characteristics entering from region L into the fan

vV, +2a, =V, +2a =2a, (7)
asv. =0. Thus v, + 2a, = constant . (8)



Along a C; characteristics defined by % =V, —a, starting from the origin and passing through the
1

fan v, —2a, = constant. 9)
Adding and subtracting Egs. (8) and (9) we find that v, =constant and a, =constant separately.
This means that % =V, —a, =constant or v, —a, = % (10)
1
the C,  characteristics are  straight  lines.  Substituting a from  Eq.(7)
% =V, -, =V, +V—21— a,_ = %vl —a, . This is the solution for the water velocity in the fan:
2 X
Vi=—|a, +—|. 11
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From (10 a=—a ———. 12
(10) 1= 58 2 (12)
2
Naturally the water depth is given by Yy, = & (13)
g

In equations (11) and (12) the interval of validity for % Is given by —a, S%Ssz —a,. This

completes the solution for the fan. Finally the Froude number distribution can also be computed.

4. Critical water depth ratio

Programming above equations and running the program with different Lratios one can observe

Yr
that the inclination of the right border C," of the fan can be negative or positive. It is interesting to

find the critical Lratio for which the right border is identical with the t-axis (x=0 for all right

Yr
border points of the fan).

=V, —a, =0 we see that V, =a, =4/0Y, =4/9-YYg =\/7-,/gyR . Equating this with (5)

From %
dt|,

gives

W.M:(\/;’—T—W}M or %:%W. (14)

R
Putting this into (6) gives after some calculations a qubic equation for the critical value of Y:
Y?®-3Y?-Y +1=0. The physically relevant solution is Y = 3,21432. Finally from (14)

Nl Oy _ 7932 (15)
Yr 4
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5 Net of characteristic lines
For a subcritical water depth ratio the C* and C” characteristic lines, the fan and the water jump
location are shown below.



w, water jump

-+
I — S

(@]

=

Fig. 2 Characteristic lines for sudden weir rupture



