
Steady 2D supersonic gas flow (in the diffuser part of a Laval nozzle) 
 
The flow is completely described by the Euler equations and the continuity equation. 
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2nd Euler: 
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By multiplying with the given terms and adding these equations we get 

  
2

2

222

2

y
v

x
u

y
v

a
v

x
v

a
uv

y
u

a
uv

x
u

a
u

∂
∂

+
∂
∂

=
∂
∂

−
∂
∂

−
∂
∂

−
∂
∂

−
ρ

ρ
ρ

ρ
.   (1) 

Continuity: 
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If we divide by the ρ we get the right hand side sum of Eq. (1): 
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Substituting this into Eq. (1) the equation of motion has been derived for the supersonic flow: 
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Assuming isentropic flow the flow is rotation free too (Crocco’s theorem). There exists a 
velocity potential ( )yx ,Φ .  The velocity components of the velocity vector w are u and v and 
can be derived as derivatives of the potential: 
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One can prove that this is a 2nd order PDE of hyperbolic type. We introduce new independent 
variables ηξ ,  instead of x and y.  Before we do it we must find an equation for the sonic 
velocity a too. In steady isentropic flow the energy equation is htotal = constant. The total 
enthalpy is: 
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The Laval nozzle takes the air from the free atmosphere where the fluid velocity w is zero and 
the sonic speed a0 is known. Thus 
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Now the transformation of Eq. (3) must be done. In the same way as in Chapter 4 of 
“Unsteady flow in pipes” we differentiate Φ with respect to x(ξ, η)  and y(ξ, η)  as many times 
as needed.  
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In order to simplify this equation the first and third bracketed term must be zero, they have 
identical structure. The first term to be made zero us a quadratic equation for ξx. Solving for 
this we have: 
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On the other hand if we consider the ξ = constant line of the new coordinate system, then its 

total differential is zero: 0=+= dydxd yx ξξξ  which means that 
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−= . From Eq. (4) 

the tangent of the ξ = constant characteristic line is: 
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for ξ = constant, the other one for η = constant.  
Instead of the velocity components u and v we can introduce the components of the velocity 
vector w, 

ϑϑ sin    ;cos wvwu == ,  further the Mach number: .
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If we perturb a supersonic flow of velocity 
w at some point than this perturbation 
propagates in the inside of the Mach cone. 
In 1 second the perturbed gas spot moves 
to a distance of w meter and the 
perturbation is spreading inside a circle of 
radius a meter. From these the sinus of the 

Mach cone angle α is: 
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We can write – without going into trigonometric details – that  

      ( )αϑ += tan
dx
dy

 for linesconstant =ξ and  (5) 
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 for linesconstant =η .        (6) 

 
Now the flow angle ϑ  can be introduced also into Eq.(2). Again without details we get 
 

012

=
∂
∂−

−
∂
∂

ηη
ϑ w

w
M  for linesconstant =ξ and  (7) 

012

=
∂
∂−

+
∂
∂

ξξ
ϑ w

w
M  for linesconstant =η and  (8) 

The computation must start just downstream of the throat of the Laval nozzle where the M 
number is slightly above M = 1. The computation may proceed inside a domain bordered by 
the starting vertical and two characteristic lines. Further downstream the symmetry boundary 
condition at the horizontal axis and the solid boundary with prescribed flow angle ϑ  must be 
considered. The sonoc speed must be recalculated in all newly computed points from Eq. (4). 

From the sonic velocity the absolute temperature 
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and finally by the ideal gas law the density 
RT
p

=ρ can be computed.  

 
The contour of a Laval nozzle downstream of the throat can be easily defined by some simple 
formula as e.g. ( )cxbay cos⋅−= . The parameters must be adjusted appropriately. 
 

y = 1,5-0,5cos(x0,8)

 


