Steady 2D supersonic gas flow (in the diffuser part of a Laval nozzle)

The flow is completely described by the Euler equations and the continuity equation.
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By multiplying with the given terms and adding these equations we get
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If we divide by the p we get the right hand side sum of Eq. (1): E—p+l—p =— a_u @
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Substituting this into Eq. (1) the equation of motion has been derived for the supersonic flow:
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Assuming isentropic flow the flow is rotation free too (Crocco’s theorem). There exists a
velocity potential @(x, y ) The velocity components of the velocity vector w are u and v and
can be derived as derivatives of the potential:

u= %—@ =@ ; V= oP =@ . We put these and second order derivatives into Eg. (2):
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One can prove that this is a 2" order PDE of hyperbolic type. We introduce new independent
variables £, instead of x and y. Before we do it we must find an equation for the sonic

velocity a too. In steady isentropic flow the energy equation is hy = constant. The total
enthalpy is:
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The Laval nozzle takes the air from the free atmosphere where the fluid velocity w is zero and
the sonic speed ao is known. Thus

k-1 .
a’ +w? —==a/ or by rearranging
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a’=a; —WZKT_l. (4)



Now the transformation of Eqg. (3) must be done. In the same way as in Chapter 4 of
“Unsteady flow in pipes” we differentiate @ with respect to x(&, ) and y(&, #) as many times
as needed.
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In order to simplify this equation the first and third bracketed term must be zero, they have
identical structure. The first term to be made zero us a quadratic equation for &. Solving for
this we have:
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On the other hand if we consider the & = constant line of the new coordinate system, then its

d
total differential is zero: d& =&, dx+¢&,dy =0 which means that d—yz—;’ix . From Eq. (4)
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the tangent of the &£ = constant characteristic line is: ™ =— > . One sign is
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for & = constant, the other one for # = constant.
Instead of the velocity components u and v we can introduce the components of the velocity

vector w,
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u=wcos$: v=wsing, further the Mach number:M ? = Then the
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tangents read
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If we perturb a supersonic flow of velocity
w at some point than this perturbation
propagates in the inside of the Mach cone. Mach cone

In 1 second the perturbed gas spot moves
to a distance of w meter and the
perturbation is spreading inside a circle of
radius a meter. From these the sinus of the
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We can write — without going into trigonometric details — that
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d—y =tan(9+a ) for & = constant linesand (5)
X



d
d_y =tan (9 —a ) for 7 = constant lines. (6)
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Now the flow angle ¢ can be introduced also into Eq.(2). Again without details we get
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The computation must start just downstream of the throat of the Laval nozzle where the M
number is slightly above M = 1. The computation may proceed inside a domain bordered by
the starting vertical and two characteristic lines. Further downstream the symmetry boundary
condition at the horizontal axis and the solid boundary with prescribed flow angle 9 must be

considered. The sonoc speed must be recalculated in all newly computed points from Eqg. (4).
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From the sonic velocity the absolute temperature T :% can be calculated. As we have

assumed isentropic flow

—— = constant is valid thus we find the pressure distribution too
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and finally by the ideal gas law the density p = %can be computed.

The contour of a Laval nozzle downstream of the throat can be easily defined by some simple
formulaase.g. y=a-b- cos(x ¢ ) The parameters must be adjusted appropriately.

y= 1,5—0,5cos(x0/




