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Preface

Acoustics was originally the study of small pressure waves in air which can be detected by
the human ear: sound. In this course we will limit ourselves to the original definition and
to the propagation in fluids like air and water. In such a case acoustics is a part of fluid
dynamics. A major problem of fluid dynamics is that the equations of motion are non-linear.
This implies that an exact general solution of these equations is not available. Acoustics is
a first order approximation in which non-linear effects are neglected. The sound generated
by a loudspeaker or any unsteady movement of a solid boundary are examples of the sound
generation mechanism in classical acoustics. In the present course we will mainly discuss the
topic of aeroacoustics (flow induced sound). The key of the famous Lighthill theory of sound
generation by turbulence is the use of an integral equation which is much more suitable to
introducing approximations than a differential equation. We therefore discuss in some detail
the use of Green’s functions to derive integral equations. Furthermore, we will discuss vortex
sound theory, Linearized Euler Equations (LEE), perturbation equations and finally a general
approach applicable to low and high Mach number cases.

Since years noise levels due to the rapid growth of air and ground traffic densities have
become an issue for urban communities. Additionally to these noise sources, many other ma-
chines producing significant noise levels surround our daily activities and contribute to deteri-
oration of quality of life. The natural response to this problem has been, on the governmental
side the definition of strict noise regulations, and on the individual side the development of a
greater demand for machines with more acoustic comfort, in the common search of a quieter
place to live. These demands have motivated the manufacturers to develop noise reduction
strategies and to set noise reduction goals, in special in the airplane and automobile industry.

The script contains a comprehensive introduction to aeroacoustics, whereby only the es-
sential parts are covered in the lecture. The questions and exercises listed in Chap. 4 are to
be worked out as homework and then sent as a pdf file to manfred.kaltenbacher@tugraz.at,
at least 5 days before the second block date. In the second block, your homework will be
discussed and latest research achievements and applications to engineering and medical prob-
lems will be presented.

Enjoy reading the script!

mailto:manfred.kaltenbacher@tugraz.at
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1. Fluid Dynamics

We consider the motion of fluids in the continuum approximation, so that a body B is com-
posed of particles R as displayed in Fig. 1.1. Thereby, a particle R already represents a
macroscopic element. On the one hand a particle has to be small enough to describe the
deformation accurately and on the other hand large enough to satisfy the assumptions of
continuum theory. This means that the physical quantities density ρ, pressure p, velocity v,

Fluid particle

Fluid body B

R

Figure 1.1.: A body B composed of particles R.

temperature T , inner energy e and so on are functions of space and time, and are written as
density ρ(xi, t), pressure p(xi, t), velocity v(xi, t), temperature T (xi, t), inner energy e(xi, t),
etc.. So, the total change of a scalar quantity like the density ρ is

dρ =

(
∂ρ

∂t

)
dt+

(
∂ρ

∂x1

)
dx1 +

(
∂ρ

∂x2

)
dx2 +

(
∂ρ

∂x3

)
dx3 . (1.1)

Therefore, the total derivative (also called substantial derivative) computes by

dρ

dt
=

∂ρ

∂t
+

∂ρ

∂x1

(
dx1

dt

)
+

∂ρ

∂x2

(
dx2

dt

)
+

∂ρ

∂x3

(
dx3

dt

)
=

∂ρ

∂t
+

3∑
1

∂ρ

∂xi

(
dxi
dt

)
=
∂ρ

∂t
+
∂ρ

∂xi

(
dxi
dt

)
︸ ︷︷ ︸

vi

. (1.2)

Note that in the last line of (1.2) we have used the summation rule of Einstein1. Furthermore,
in literature the substantial derivative of a physical quantity is mainly denoted by the capital
letter D and writes as

D

Dt
=

∂

∂t
+ v · ∇ . (1.3)

1.1. Spatial Reference Systems

A spatial reference system defines how the motion of a continuum is described i.e., from
which perspective an observer views the matter. In a Lagrangian frame of reference, the

1In the following, we use both vector and index notation; for details see App. B and C.
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observer monitors the trajectory in space of each material point and measures its physical
quantities. This can be understood by considering a measuring probe which moves together
with the material, like a boat on a river. The advantage is that free or moving boundaries
can be captured easily as they require no special effort. Therefore, the approach is suitable
in the case of structural mechanics. However, its limitation is obtained dealing with large
deformation, as in the case of fluid dynamics. In this case, a better choice is the Eulerian frame
of reference, in which the observer monitors a single point in space when measuring physical
quantities – the measuring probe stays at a fixed position in space. However, contrary to the
Lagrangian approach, difficulties arise with deformations on the domain boundary, e.g., free
boundaries and moving interfaces.
Formally, a deformation of a material body B is defined as a map ψ, which projects each
point X at time t ∈ R to its current location x, in mathematical terms

x = ψ(X, t), ψ : B × R→ R3 .

By coupling structural and fluid mechanics an additional map between the different reference
systems is necessary. In [?] a first method to solve the problem for an incompressible, viscous
fluid has been presented. The so called Arbitrary-Lagrangian-Eulerian (ALE) method com-
bines the advantages of both approaches. The concept is that the observer is neither fixed
nor does move together with the material, but can move arbitrarily . Between each of the
two reference systems a bijective mapping of the spatial variables x (Eulerian system), X
(Lagrangian system) and χ (ALE system) exists, as illustrated in Fig. 1.2. The choice of

La
gra

ngian Syste
m Eularian System

ALE System

Figure 1.2.: Illustration of mapping between reference systems.

reference system effects the partial differential equations (PDEs) through its time derivative.
Exemplified for a quantity f and its velocity v, the total derivative results for the

� Lagrangian system to
Df

Dt
=
∂f

∂t

∣∣∣∣
X

.

� Eulerian system to

Df

Dt
=

∂f

∂t

∣∣∣∣
x︸ ︷︷ ︸

local change

+ (v · ∇x) f︸ ︷︷ ︸
convective change

.
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� ALE system to
Df

Dt
=
∂f

∂t

∣∣∣∣
χ

+ (vc · ∇χ) f, (1.4)

with the convective velocity vc = v−vg, the difference between material velocity v and
grid velocity vg.

1.2. Reynolds Transport Theorem

To derive the integral form of the balance equations, the rate of change of integrals of scalar
and vector functions has to be described, which is known as the Reynolds’ transport theorem.
The volume integral can change for two reasons: (1) scalar or vector functions change (2) the
volume changes. The following discussion is directed to scalar valued functions.

Let’s consider a scalar quantity f(x, t) : Ω × R → R, the change in time in a Lagrangian
system of its volume integral

F (t) :=

∫
Ω(t)

f(x, t) dx , (1.5)

is given as
D

Dt
F (t) =

D

Dt

∫
ΩL

f(X, t) dx =

∫
ΩL

∂

∂t
f(X, t) dx . (1.6)

Due to the linearity of the integral and differential operators and since the Lagrangian domain
ΩL conforms with the material movement, no additional terms are needed.
In an Eulerian context, time derivation must also take the time dependent domain Ω(t) into
account by adding a surface flux term, which can be formulated as a volume term using the
integral theorem of Gauß. This results in

D

Dt

∫
Ω(t)

f dx =

∫
Ω(t)

∂

∂t
f dx+

∫
Γ(t)

fv · nds

=

∫
Ω(t)

(
∂

∂t
f +∇ · (fv)

)
dx .

(1.7)

1.3. Conservation Equations

The basic equations for the flow field are the conservation of mass, momentum and energy.
Together with the constitutive equations and equations of state, a full set of PDEs is derived.

1.3.1. Conservation of Mass

The mass m of a body is the volume integral of its density ρ

m =

∫
Ω(t)

ρ(x, t) dx . (1.8)

3



Mass conservation states that the mass of a body is conserved over time, assuming there is
no source or drain. Therefore, applying Reynolds transport theorem (1.7), results in

Dm

Dt
=

∫
Ω

∂ρ

∂t
dx+

∫
Γ

ρv · nds

=

∫
Ω

(
∂ρ

∂t
+∇ · (ρv)

)
dx = 0.

(1.9)

The integral in (1.9) can be dismissed, as it holds for arbitrary Ω and in the special case of
an incompressible fluid (ρ = const. ∀(x, t) ∈ Ω × R), which may be assumed for low Mach
numbers (see Sec. 1.4), the time and space derivative of the density vanishes. This lead to
the following form of mass conservation equations

∂ρ

∂t
+∇ · (ρv) = 0 (compressible fluid),

∇ · v = ∇ · vic = 0 (incompressible fluid).
(1.10)

Thereby, the subscript ic denotes that the physical quantity is incompressible.

1.3.2. Conservation of Momentum

The equation of momentum is implied by Newtons second law and states that momentum Im

is the product of mass m and velocity v

Im = mv . (1.11)

Derivation in time gives the rate of change of momentum, which is equal to the force F and
reveals the relation to Newtons second law in an Eulerian reference system

F =
DIm

Dt
=

D

Dt
(mv) =

∂

∂t
(mv) +∇ · (mv ⊗ v), (1.12)

where v ⊗ v is a tensor defined by the dyadic product ⊗ (see App. C). The last equality in
(1.12) is derived from Reynolds transport theorem (1.7) and mass conservation (1.10).

The forces F acting on fluids can be split up into forces acting on the surface of the body
FΓ, forces due to momentum of the molecules DIm/Dt and external forces Fex (e.g. gravity,
electromagnetic forces)

F = FΓ +
D

Dt
Im + Fex. (1.13)

Thereby, the surface forces compute by

3∑
i=1

FΓj = −
3∑
i=1

∂p

∂xj
Ωnj = −Ω∇p. (1.14)

and the total change of momentum Im by

D

Dt
Im = Ω∇ · [τ ] , (1.15)

with the viscous stress tensor [τ ] (see Fig. 1.3).
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Figure 1.3.: Forces acting on a fluid element.

Now, we exploit the fact that m = ρΩ and insert the pressure force (1.14), the viscous force
(1.15) and any external forces per unit volume f acting on the fluid into (1.12). Thereby, we
arrive at the momentum equations

∂ρv

∂t
+∇ · (ρv ⊗ v) = −∇p+∇ · [τ ] + f , (1.16)

∂ρv

∂t
+∇ · (ρv ⊗ v + p [I]− [τ ]) = f , (1.17)

∂ρvi
∂t

+
∂

∂xj
(ρvjvi + pδij − τij) = fi , (1.18)

with [I] the identity tensor. Furthermore, we introduce the momentum flux tensor [π] defined
by

πij = ρvivj + pδij − τij , (1.19)

and the fluid stress tensor [σ f ] by

[σ f ] = −p [I] + [τ ] . (1.20)

To arrive at an alternative formulation for the momentum equation, also called the non-
conservative form, we exploit the following identities

∇ · (ρv ⊗ v) = ρv · ∇v + v∇ · (ρv) , (1.21)

∂ρv

∂t
= ρ

∂v

∂t
+ v

∂ρ

∂t
, (1.22)

and rewrite (1.16) by

ρ
∂v

∂t
+ v

∂ρ

∂t
+ v∇ · (ρv) + ρv · ∇v = −∇p+∇ · [τ ] + f . (1.23)

Now, we use the mass conservation and arrive at

ρ
∂v

∂t
+ ρv · ∇v = ρ

Dv

Dt
= −∇p+∇ · [τ ] + f , (1.24)

ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

+ fi .
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1.3.3. Conservation of Energy

The total balance of energy considers the inner, the kinetic and potential energy of a fluid.
Since we do not consider gravity, the change of total energy eT over time for a fluid element
with mass m is given by

D

Dt

(
m

(
1

2
v2 + e

))
= m

D

Dt

(
1

2
v2 + e

)
+

(
1

2
v2 + e

)
Dm

Dt
, (1.25)

with e the inner energy and v2 = v · v. Due to mass conservation, the second term is zero
and we obtain

D

Dt

(
m

(
1

2
v2 + e

))
= ρΩ

D

Dt

(
1

2
v2 + e

)
. (1.26)

This change of energy can be caused by [?]

� heat production per unit of volume: qhΩ

� heat conduction energy due to heat flux qT: (−∂qTi/∂xi) Ω

� energy due to surface pressure force: (−∂/∂xi(pvi)) Ω

� energy due to surface shear force: (∂/∂xi(τijvj)) Ω

� mechanical energy due to the force density fi given by: (fivi) Ω

Thereby, we arrive at the conservation of energy given by

ρ
D

Dt

(
1

2
v2 + e

)
= qh −

∂qTi

∂xi
− ∂pvi

∂xi
+
∂τijvj
∂xi

+ fivi , (1.27)

or in vector notation by

ρ
D

Dt

(
1

2
v2 + e

)
= qh −∇ · qT −∇ · (pv) +∇ · ([τ ] · v) + f · v . (1.28)

1.3.4. Constitutive equations

The conservation of mass, momentum and energy involve much more unknowns than equa-
tions. To close the system, additional information is provided by empirical information in
form of constitutive equations. A good approximation is obtained by assuming the fluid to
be in thermodynamic equilibrium. This implies for a homogeneous fluid that two intrinsic
state variables fully determine the state of the fluid.
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Speed of sound

When we apply specific heat production qh to a fluid element, then the specific inner en-
ergy e increases and at the same time the volume changes dρ−1. Thereby, the first law of
thermodynamics is expressed by

de = dqh − p dρ−1 . (1.29)

The second term in (1.29) considers a volumetric change which occurs at constant pressure. If
the change occurs sufficiently slow, the fluid element is always in thermodynamic equilibrium,
and we can express the heat input by the specific entropy s

dqh = T ds . (1.30)

Therefore, we may rewrite (1.29) and arrive at the fundamental law of thermodynamics

de = T ds− p dρ−1

= T ds+
p

ρ2
dρ . (1.31)

In many cases we need to consider the change in pressure at constant volume. In this case,
the particle increases its capacity to do work, which can be expressed by the enthalpy

h = e+
p

ρ
, (1.32)

and using (1.29) we arrive at the relation for its total change

dh = de+
dp

ρ
+ p dρ−1 = T ds+

dp

ρ
. (1.33)

Towards acoustics, it is convenient to choose the mass density ρ and the specific entropy
s as intrinsic state variables. Hence, the specific inner energy e is completely defined by a
relation denoted as the thermal equation of state

e = e(ρ, s) . (1.34)

Therefore, variations of e are given by

de =

(
∂e

∂ρ

)
s

dρ+

(
∂e

∂s

)
ρ

ds . (1.35)

A comparison with the fundamental law of thermodynamics (1.31) provides the thermody-
namic equations for the temperature T and pressure p

T =

(
∂e

∂s

)
ρ

; p = ρ2

(
∂e

∂ρ

)
s

. (1.36)

Since p is a function of ρ and s, we may write

dp =

(
∂p

∂ρ

)
s

dρ+

(
∂p

∂s

)
ρ

ds . (1.37)
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As sound is defined as isentropic (ds = 0) pressure-density perturbations, the isentropic speed
of sound is defined by

c =

√(
∂p

∂ρ

)
s

. (1.38)

Since in many applications the fluid considered is air at ambient pressure and temperature,
we may use the ideal gas law

p = ρRT (1.39)

with the specific gas constant R, which computes for an ideal gas as

R = cp − cΩ . (1.40)

In (1.40) cp, cΩ denote the specific heat at constant pressure and constant volume, respectively.
Using (1.39) and computing the total derivative results in

dp =
∂p

∂ρ
dρ+

∂p

∂T
dT = RT dρ+ ρR dT . (1.41)

Diving this result by p and exploring (1.39) leads to

dp

p
=

dρ

ρ
+

dT

T
. (1.42)

Furthermore, the inner energy e depends for an ideal gas only on the temperature T via

de = cΩ dT . (1.43)

Substituting this relations in (1.31), assuming an isentropic state ( ds = 0) and using (1.39) re-
sults in

cΩ dT =
p

ρ2
dρ → dT

T
=
R

cΩ

dρ

ρ
. (1.44)

This relation can be substituted in (1.42) to arrive at

dp

p
=

dρ

ρ
+
R

cΩ

dρ

ρ
=
cp
cΩ

dρ

ρ
= κ

dρ

ρ
, (1.45)

with κ the specific heat ratio (also known as adiabatic exponent). A comparison of (1.45) with
(1.38) yields

c =
√
κp/ρ =

√
κRT . (1.46)

We see that the speed of sound c of an ideal gas depends only on the temperature. For air κ
has a value of 1.402 so that we obtain a speed of sound c at T = 15◦C of 341 m/s. For most
practical applications, we can set the speed of sound to 340 m/s within a temperature range
of 5◦C to 25◦C. Combining (1.45) and (1.46), we obtain the general pressure-density relation
for an isentropic state

dp = c2 dρ . (1.47)

Furthermore, since we use an Eulerian frame of reference, we may rewrite (1.47) by

Dp

Dt
= c2Dρ

Dt
. (1.48)
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Viscosity

As we consider local thermodynamic equilibrium, it is reasonable to assume that transport
processes are determined by linear functions of the gradient of the flow state variables. This
corresponds to Newtonian fluid behavior expressed by

τij = 2µ εij + λεiiδij , (1.49)

with the rate of the strain tensor ε

εij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (1.50)

Note that the term εii = ∇ · v takes into account the effect of dilatation. In thermodynamic
equilibrium, the bulk viscosity λ is equal to −(2/3)µ (with µ being the dynamic viscosity)
according to the hypothesis of Stokes, and we may write

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
− 2

3
µ
∂vk
∂xk

δij . (1.51)

Entropy

Exploring the thermodynamic relations, we may rewrite the conservation of energy (see (1.28))
by the total change of the entropy. In doing so, (1.31) yields

De

Dt
= T

Ds

Dt
− p Dρ

−1

Dt
= T

Ds

Dt
+

p

ρ2

Dρ

Dt
. (1.52)

In a next step, we incorporate the total energy eT = e+ v2/2 and multiply with the density

ρ
DeT

Dt
= ρT

Ds

Dt
+
p

ρ

Dρ

Dt
+ ρ

D

Dt

(
v2

2

)
. (1.53)

In a next step, we use mass conservation rewritten with the substantial derivative

1

ρ

Dρ

Dt
= −∇ · v ,

and arrive at

ρ
DeT

Dt
= ρT

Ds

Dt
− p∂vi

∂xi
+ ρ

D

Dt

(
v2

2

)
. (1.54)

Furthermore, we may reformulate the last term in (1.53) by

ρ
D

Dt

(
v2

2

)
= v · ρDv

Dt
.

Now, we can use the conservation of momentum according to (1.24) and arrive at

ρ
DeT

Dt
= ρT

Ds

Dt
− p∂vi

∂xi
+ vi

(
− ∂p

∂xi
+
∂τij
∂xj

+ fi

)
. (1.55)
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Finally, we substract from this relation the original conservation of energy according to (1.27)
and obtain (not internal heat source, qh = 0)

ρT
Ds

Dt
= τij

∂vi
∂xj
− ∂qTi

∂xi
. (1.56)

When heat transfer is neglected, the flow is adiabatic. It is isentropic, when it is adiabatic
and reversible, which means that the viscous dissipation can be neglected, which leads to

ρT
Ds

Dt
= 0 . (1.57)

Finally, when the fluid is homogeneous and the entropy uniform ( ds = 0), we call the flow
homentropic.

1.4. Characterization of Flows by Dimensionless Numbers

Two flows around geometric similar models are physically similar if all characteristic numbers
coincide [?]. Especially for measurement setups, these similarity considerations are important
as it allows measurements of down-sized geometries. Furthermore, the characteristic numbers
are used to classify a flow situation.

1.4.1. Reynolds number

The Reynolds number is defined by

Re =
vl

ν
, (1.58)

with the characteristic flow velocity v, flow length l and kinematic viscosity ν. It provides
the ratio between stationary inertia forces and viscous forces. Thereby, it allows to subdivide
flows into laminar and turbulent ones.

1.4.2. Mach number

The Mach number allows for an approximate subdivision of a flow in compressible (Ma > 0.3)
and incompressible (Ma ≤ 0.3), and is defined by

Ma =
v

c
, (1.59)

with c the speed of sound.

1.4.3. Strouhal number

In unsteady problems, periodic oscillating flow structures may occur, e.g. the Kármán vortex
street in the wake of a cylinder. The dimensionless frequency of such an oscillation is denoted
as the Strouhal number, and is defined by

St = f
l

v
, (1.60)

with f being the shedding frequency.

10



1.4.4. Helmholtz number

As Strouhal number describes the periodic structures of unsteady flow, the Helmholtz number
He qualifies periodic structures based on the speed of sound c. Acoustic phenomena are
characterized by the Helmholtz number

He =
l

λ
=
fl

c
= St Ma (1.61)

The vortical structures of the von Kármán’s vortex street radiate acoustic waves at the same
frequency f , but the acoustic wavelength λ is 1/Ma larger than the characteristic length of
vortical structures, where Ma denotes the Mach number.

A special case for He� 1 is compact acoustics that approximates the wave equation by a
Poisson equation. Acoustic compact bodies do not scatter sound, they are ”transparent” to
the acoustic wave and neglecting these bodies in an acoustic propagation simulation leads to
an insignificant error.

1.4.5. Knudsen number

Knudsen number describes if a fluid can be modeled as continuum or the particles should be
treated as individuals. It is defined by

Kn =
λF

l
, (1.62)

with λF being the free path of a particle. For Kn� 1, continuum mechanics can be used to
formulate the fluid state.

1.5. Vorticity

The motion of a fluid particle is a superposition of

� translational motion

� rotation

� distortion of shape, i.e. strain .

The rate of the strain tensor ∂vi/∂xj can be expressed as the sum of a symmetric and an
anti-symmetric part

∂vi
∂xj

=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
+

1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
. (1.63)

The symmetric part defines the rate of strain tensor [ε] (see (1.50)) and corresponds to a
stretching of fluid particles along the principle axes. The anti-symmetric part

wij =
1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
, (1.64)

has only three independent components, since wii = 0, wij = −wji, and are combined into a
vector, which is called the vorticity w and computes by

w = ∇× v . (1.65)
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The vorticity gives a measure of the angular rotation of fluid particles. E.g., a fluid particle
with angular velocity about the origin, i.e. velocity v is given by Ω× r, has vorticity

ω = 2Ω .

Vorticity lines are always tangential to the vorticity vector and form closed field lines. These
lines pass through every point of a simple closed curve and define the boundary of a vortex
tube. For a tube of small cross-sectional area ds the product ω · ds is called the tube strength,
which has to be constant because of the following vector identity

∇ · ω = ∇ · ∇ × v = 0 .

Therefore the divergence theorem (also known as Gauss integral theorem, see App. B) leads
to ∫

Ω

∇ · ω dx =

∮
Γ(Ω)

ω · ds = 0 . (1.66)

We will now derive the PDE for vorticity and show that vorticity is transported by con-
vection and molecular diffusion. Therefore, an initially confined region of vortex loops can
frequently be assumed to remain within a bounded domain. We assume a Stokesian fluid
and a homentropic flow, where the density ρ is only a function of pressure p. We start at
the conservation of momentum (divided by the density) and use the vector identity (B.10) to
arrive at

∂v

∂t
+ v · ∇v +

1

ρ
∇p = −ν

(
∇× ω − 4

3
∇∇ · v

)
. (1.67)

In a next step, we use the vector identity (B.13) to rewrite the second term on the left hand
side and the relation (A.1) for third term to obtain Crocco’s form of momentum conservation

∂v

∂t
+ ω × v +∇B = −ν

(
∇× ω − 4

3
∇∇ · v

)
. (1.68)

Thereby, B denotes the total enthalpy in a homentropic flow

B =

∫
dp

ρ
+

1

2
v2 , (1.69)

and the vector ω× v is called the Lamb vector. When the flow is incompressible (denoted by
the subscript ic), Crocco’s equation reduces to

∂vic

∂t
+ ω × vic +∇B = −ν∇× ω , (1.70)

in which case dissipation occurs only for ω 6= 0. Applying the curl to (1.70) and considering
the vector identity for ω

∇×∇× ω = ∇∇ · ω −∇ · ∇ω = ∇ · ∇ω .

results in
∂ω

∂t
+∇×

(
ω × vic

)
= ν∇ · ∇ω , (1.71)

Finally, applying (B.11) and exploring the relation ∇ · vic = 0, we arrive at the vorticity
equation

Dω

Dt
= ω · ∇vic + ν∇ · ∇ω . (1.72)

The terms on the right hand side determine the mechanisms describing the change of vorticity:
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� Term 1: ω · ∇vic

In the absence of viscosity, vortex lines move with the fluid. They are rotated and
stretched in a manner determined by the flow. When a vortex tube is stretched, the
cross-sectional area is decreased and therefore the amplitude of vorticity has to increase
in order to preserve the strength of the tube.

� Term 2: ν∇ · ∇ω
This term is only important in regions of high shear, in particular near boundaries. Near
walls the velocity becomes very small, so that (1.72) reduces to a diffusion equation

∂ω

∂t
= ν∇ · ∇ω . (1.73)

Vorticity is generated at solid boundaries and the viscosity is responsible for its diffusion
into the fluid domain, where it may subsequently be convected by the flow.

On the other hand, if the vorticity within an incompressible flow is zero, we arrive at
the potential flow. Then, we can describe the flow by a scalar potential φ (also called flow
potential)

vic = ∇φ . (1.74)

According to the incompressibility condition, we obtain the describing PDE

∇ · vic = ∇ · ∇φ = 0 . (1.75)

Please note that a potential flow is both, divergence- and curl-free. Therefore, according to
the Helmholtz decomposition, the velocity field vic in an incompressibel flow can be split into
two vector fields

vic = ∇φ+∇×Ψ = ∇φ+ vv , (1.76)

where φ describes the potential flow and vv the vortical flow with

ω = ∇× vic = ∇× vv . (1.77)

By applying the curl to (1.76), we obtain for the vector potential

∇×∇×ψ = ∇× vic = ∇× vv = ω . (1.78)

Furthermore, by using the vector identity

∇ · ∇ψ = ∇∇ ·ψ −∇×∇×ψ ,

we may write
∇ · ∇ψ = −ω . (1.79)

To obtain ψ we can use Green’s function for the Laplace equation and arrive at

ψ(x) =

∫
Ω

ω(y)

4π|x− y|
dy . (1.80)
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On the other hand, knowing the vorticity ω, we may compute vv by

vv = ∇x ×
∫
Ω

ω(y)

4π|x− y|
dy =

∫
Ω

(y − x)× ω(y)

4π|x− y|3
dy , (1.81)

which is a pure kinematic relation. Now, because vorticity is transported by convection and
diffusion, an initially confined region of vorticity will tend to remain within a bounded body,
so that it may be assumed that the hydrodynamic field vv → 0 as |x| → ∞ with O(1/|x|3)
[?].

Finally, let us consider a pulsating sphere as displayed in Fig. 1.4. Since there are no

vn

a
0

Γr

Figure 1.4.: Pulsating sphere.

sources in the fluid and we assume the fluid to be incompressible, we can model it by the
Laplacian of the scalar velocity potential

∇ · ∇φ = ∇2φ = 0 . (1.82)

Considering a radially symmetric setup and using spherical coordinates yields

∇2φ =
1

r2

∂

∂r

(
r2 ∂

∂r

)
φ = 0 ; r > a ,

and hence

φ =
A

r
+B .

We assume that φ vanishes at ∞, so B can be set to zero. Furthermore, with the boundary
condition ∂φ/∂r = vn at r = a we get

φ(t) = −a
2

r
vn(t) for r > a . (1.83)
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Assuming a non-viscous fluid ([τ ] = 0), no external forces (f = 0) and neglecting the convec-
tive term, we may write the momentum conservation (see (1.24)) for an incompressible flow
by

ρ0
∂vic

∂t
+∇pic = 0 . (1.84)

Using the scalar potential φ, we arrive at the following linearized relation

pic = −ρ0
∂φ

∂t
. (1.85)

With (1.83) we can compute the resulting pressure pic to

pic(t) = −ρ0
∂φ

∂t
= ρ0

a2

r

∂vn

∂t
. (1.86)

The volume flux qΩ(t) at any time computes as

qΩ(t) =

∮
Γ

∇φ · ds =

∮
Γ

∇φ · er︸ ︷︷ ︸
∂φ/∂r=vn

ds = 4πa2 vn(t) ,

and so we can rewrite (1.83) by

φ(t) = −qΩ(t)

4πr
for r > a . (1.87)

This solution also holds for r → 0 (see [?]).

1.6. Towards Acoustics

In the previous section, we have demonstrated the decomposition of an incompressible flow
into its potential flow described by the scalar potential φ and its vortical flow described by
the vector potential Ψ. Now, we consider conservation of mass for a compressible fluid

1

ρ

Dρ

Dt
= −∇ · v , (1.88)

and applying Helmholtz decomposition to the fluid velocity

v = ∇φ̃+∇× Ψ̃ , (1.89)

Thereby, we obtain

1

ρ

Dρ

Dt
= −∇ · ∇φ̃−∇ · ∇ × Ψ̃︸ ︷︷ ︸

=0

= −∇ · ∇φ̃ . (1.90)

In this case, the scalar potential φ̃ also includes compressible effects, which may include wave
propagation, since this is just possible in a compressible fluid. Indeed, as already described
in [?], the overall compressible flow may be decomposed into three parts:
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� Irrotational deformation without volume change (see Fig. 1.5a):
The classical theory of potential flow equations describes this velocity field and is well
known in fluid dynamics. The resulting flow field is both, divergence-free and curl-free.

� A rigid-body rotation at an angular velocity (see Fig. 1.5b):
Typical vortical flow structures can be described by the vorticity ω and its dynamics.

� Isotropic expansion (see Fig. 1.5c):
This part is proportional to the volumetric rate of expansion ∇·v. The field component
can be described by a scalar potential associated with the compressibility of the fluid.

(a) Irrotational defor-
mation without
volume change.

(b) A rigid-body rota-
tion.

(c) Isotropic expan-
sion.

Figure 1.5.: General decomposition of a flow field.

The extension of the classical Helmholtz decomposition is the Helmholtz-Hodge decomposition,
which also considers the topology of a domain, and in special considers the decomposition on
a bounded domain Ωr (bounded by Γ(Ωr)). According to an compressible flow, we may write

v = vv +∇φ̃ = ∇×A+∇φ̃ . (1.91)

Thereby, the vortical field vv has zero divergence and has to be parallel to the boundary Γ(Ωr).
These two properties are necessary to obtain the uniqueness and orthogonality between the
two vector fields. The orthogonality requires∫

Ωr

∇φ̃ · vv dx = 0 . (1.92)

By applying the Gauss theorem, we obtain∫
Ωr

(
∇(φ̃vv)− φ̃∇ · vv

)
dx−

∮
Γ

φ̃vv · n ds = 0 . (1.93)

Therefore, the orthogonality condition (1.92) holds, if

∇ · vv = 0 ; vv · n = 0 . (1.94)
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This implies that the normal component of v on Γ comes entirely from the potential field.
Hence, the following PDEs for the potentials have to be fulfilled

∇×∇×A = ω in Ωr ; n×A = 0 on Γ , (1.95)

∇ · ∇φ̃ = ∇ · v in Ωr ;
∂φ̃

∂n
= n · v on Γ . (1.96)

Note that from the scalar potential φ̃ one can further separate a harmonic function φ, which
fulfills

∇ · ∇φ = 0 , (1.97)

such that ∇φ is orthogonal to both ∇(φ̃ − φ) and vv. So, we end up in a triple orthogonal
decomposition

v = vv + vc + vh = ∇×A+∇φc +∇φ . (1.98)

Thereby, the following physical interpretation can be drawn:

� vortical field, described by vv = ∇×A, which has to solve

∇×∇×A = ω in Ωr ; n×A = 0 on Γ . (1.99)

� compressible, radiating (acoustic field) field, described by vc = ∇φc

∇ · ∇φc = ∇ · v in Ωr ;
∂φc

∂n
= 0 on Γ . (1.100)

� potential flow field, described by vh = ∇φ.

∇ · ∇φ = 0 in Ωr ;
∂φ

∂n
= n · v on Γ . (1.101)
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2. Acoustics

2.1. Wave equation

We assume an isentropic case, where the total variation of the entropy is zero and the pressure
is only a function of the density. For linear acoustics, this results in the well known relation
between the acoustic pressure pa and density ρa

pa = c2
0ρa , (2.1)

with a constant speed of sound c0. Furthermore, the acoustic field can be seen as a pertur-
bation of the mean flow field

p = p0 + pa ; ρ = ρ0 + ρa ; v = v0 + va , (2.2)

with the following relations
pa � p0 ; ρa � ρ0 . (2.3)

In addition, we assume the viscosity to be zero, so that the viscous stress tensor [τ ] can be
neglected, and the force density f is zero. We call ρa the acoustic density and va the acoustic
particle velocity.

For a quiescent fluid, the mean velocity v0 is zero, and furthermore we assume a spatial
and temporal constant mean density ρ0 and pressure p0. Using the perturbation ansatz (2.2)
and substituting it into (1.10) and (1.24), results in

∂(ρ0 + ρa)

∂t
+∇ ·

(
(ρ0 + ρa)va

)
= 0 , (2.4)

(ρ0 + ρa)
∂va

∂t
+
(

(ρ0 + ρa)va

)
· ∇va = −∇

(
p0 + pa) . (2.5)

In a next step, since we derive linear acoustic conservation equations, we are allowed to cancel
second order terms (e.g., such as ρava), and arrive at conservation of mass and momentum

∂ρa

∂t
+ ρ0∇va = 0 , (2.6)

ρ0
∂va

∂t
+∇pa = 0 . (2.7)

Applying the curl-operation to (2.7) results in

∇× ∂va

∂t
= 0 , (2.8)

which allows us to introduce the scalar acoustic potential ψa via

va = −∇ψa . (2.9)
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Substituting (2.9) into (2.7) results in the well known relation between acoustic pressure and
scalar potential

pa = ρ0
∂ψa

∂t
. (2.10)

Now, we substitute this relation into (2.6), use (2.1) and arrive at the well known acoustic
wave equation

1

c2
0

∂2ψa

∂t2
−∆ψa = 0 . (2.11)

On the other hand, we also obtain the wave equation for the acoustic pressure pa exploring
(2.6), (2.7) and (2.1)

1

c2
0

∂2pa

∂t2
−∆pa = 0 . (2.12)

2.2. Simple solutions

In order to get some physical insight in the propagation of acoustic sound, we will consider two
special cases: plane and spherical waves. Let’s start with the simpler case, the propagation
of a plane wave as displayed in Fig. 2.1. Thus, we can express the acoustic pressure by

pa = pa(x, t)

Figure 2.1.: Propagation of a plane wave.

pa = pa(x, t) and the particle velocity by va = va(x, t)ex. Using these relations together with
the linear pressure-density law (assuming constant mean density, see (2.1)), we arrive at the
following 1D linear wave equation

∂2pa

∂x2
− 1

c2
0

∂2pa

∂t2
= 0 , (2.13)

which can be rewritten in factorized version as(
∂

∂x
− 1

c0

∂

∂t

) (
∂

∂x
+

1

c0

∂

∂t

)
pa = 0 . (2.14)

This version of the linearized, 1D wave equation motivates us to introduce the following two
functions (solution according to d’Alembert)

ξ = t− x/c0 ; η = t+ x/c0

with properties

∂

∂t
=

∂

∂ξ

∂ξ

∂t
+

∂

∂η

∂η

∂t
=

∂

∂ξ
+

∂

∂η
,

∂

∂x
=

∂

∂ξ

∂ξ

∂x
+

∂

∂η

∂η

∂x
=

1

c0

(
∂

∂η
− ∂

∂ξ

)
.
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Therewith, we obtain for the factorized operator

∂

∂x
− 1

c0

∂

∂t
= − 2

c0

∂

∂ξ
;

∂

∂x
+

1

c0

∂

∂t
=

2

c0

∂

∂η

and the linear, 1D wave equation transfers to

− 4

c2
0

∂

∂ξ

∂

∂η
pa = 0 .

The general solution computes as a superposition of arbitrary functions of ξ and η

pa = f(ξ) + f(η) = f(t− x/c0) + g(t+ x/c0) . (2.15)

This solution describes waves moving with the speed of sound c0 in +x and −x direction,
respectively. In a next step, we use the linearized conservation of momentum according to
(2.5), and rewrite it for the 1D case (assuming zero source term)

ρ0
∂va

∂t
+
∂pa

∂x
= 0 . (2.16)

Now, we just consider a forward propagating wave, i.e. g(t) = 0, substitute (2.15) into (2.16)
and obtain

va = − 1

ρ0

∫
∂pa

∂x
dt = − 1

ρ0

∫
∂f(t− x/c0)

∂x
dt = − 1

ρ0

∫
∂f(t− x/c0)

∂t

∂(t− x/c0)

∂x
dt

=
1

ρ0c0

∫
∂f(t− x/c0)

∂t
dt

1

ρ0c0
f(t− x/c0) =

pa

ρ0c0
. (2.17)

Therewith, the value of the acoustic pressure over acoustic particle velocity for a plane wave
is constant. To allow for a general orientation of the coordinate system, a free field plane
wave may be expressed by

pa = f(n · x− c0t) ; va =
n

ρ0c0
f(n · x− c0t) , (2.18)

where the direction of propagation is given by the unit vector n. A time harmonic plane wave
of angular frequency ω = 2πf is usually written as

pa , va ∼ ej(ωt−k·x) (2.19)

with the wave number (also called wave vector) k, which computes by

k = kn =
ω

c0
n . (2.20)

The second case of investigation will be a spherical wave, where we assume a point source
located at the origin. In the first step, we rewrite the linearized wave equation in spherical
coordinates and consider that the pressure pa will just depend on the radius r. Therewith,
the Laplace-operator reads as

∇ · ∇pa(r, t) =
∂2pa

∂r2
+

2

r

∂pa

∂r
=

1

r

∂2rpa

∂r2

20



and we obtain
1

r

∂2rpa

∂r2
− 1

c2
0

∂2pa

∂t2︸ ︷︷ ︸
1
r

∂2rpa
∂t2

= 0 . (2.21)

A multiplication of (2.21) with r results in the same wave equation as obtained for the plane
case (see (2.13)), just instead of pa we have rpa. Therefore, the solution of (2.21) reads as

pa(r, t) =
1

r
(f(t− r/c0) + g(t+ r/c0)) , (2.22)

which means that the pressure amplitude will decrease according to the distance r from the
source. The acoustic intensity is defined by the product of the two primary acoustic quantities

Ia = pa va . (2.23)

The assumed symmetry requires that all quantities will just exhibit a radial component.
Therewith, we can express the time averaged acoustic intensity Iav

a in normal direction n by
a scalar value just depending on r

Iav
a · n = Iav

r

and as a function of the time averaged acoustic power P av
a of our source

Iav
r =

P av
a

4πr2
. (2.24)

According to (2.24), the acoustic intensity decreases with the squared distance from the
source. This relation is known as the spherical spreading law.

In order to obtain the acoustic velocity va = va(r, t)er as a function of the acoustic pressure
pa, we substitute the general solution for pa (see (2.22), in which we set without loss of
generality g = 0) into the linear momentum equation (see (2.7))

∂va

∂t
= − 1

ρ0

∂pa

∂r
= − 1

ρ0

∂

∂r

(
f(t− r/c0)

r

)
va = − 1

ρ0

∂

∂r

(
F (t− r/c0)

r

)
, (2.25)

with f(t) = ∂F (t)/∂t. Using the relation

∂F (t− r/c0)

∂r
= − 1

c0

∂F (t− r/c0)

∂t
,

and performing the differentiation with respect to r results in

va(r, t) = − 1

ρ0

1

r

∂F (t− r/c0)

∂r
+
F (t− r/c0)

ρ0r2
(2.26)

=
1

ρ0c0

1

r

∂F (t− r/c0)

∂t︸ ︷︷ ︸
f/r=pa

+
F (t− r/c0)

ρ0r2
(2.27)

=
pa

ρ0c0
+
F (t− r/c0)

ρ0r2
. (2.28)
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Therewith, spherical waves show in the limit r → ∞ the same acoustic behaviour as plane
waves.

Now with this acoustic velocity-pressure relation, we may rewrite the acoustic intensity for
spherical waves as

Ir =
pa

2

ρ0c0
+

pa

ρ0r2
F (t− r/c0) .

With the relation (just outgoing waves)

pa =
f

r
=

1

r

∂F

∂t
,

we obtain

Ir =
pa

2

ρ0c0
+

1

2ρ0r3

∂F 2(t− r/c0)

∂t
,

which results for the time averaged quantity (assuming F (t − r/c) is a periodic function) in
the same expression as for the plane wave

Iav
r =

(pa
2)av

ρ0c0
.

2.3. Acoustic quantities and order of magnitudes

Let us consider a loudspeaker generating sound at a fixed frequency f and a number of
microphones recording the sound as displayed in Fig. 2.2. In a first step, we measure the
sound with one microphone fixed at x0, and we will obtain a periodic signal in time with
the same frequency f and period time T = 1/f . In a second step, we use all microphones

x

y
z

x
t

T
λ

pa(x0, t)
pa(x, t0)

Figure 2.2.: Sound generated by a loudspeaker and measured by microphones.

and record the pressure at a fixed time t0. Drawing the obtained values along the individual
positions of the microphone, e.g. along the coordinate x, we again obtain a periodic signal,
which is now periodic in space. This periodicity is characterized by the wavelength λ and is
uniquely defined by the frequency f and the speed of sound c0 via the relation

λ =
c0

f
. (2.29)
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Assuming a frequency of 1 kHz, the wavelength in air takes on the value of 0.343 m (c0 =
343 m/s).

Strictly speaking, each acoustic wave has to be considered as transient, having a beginning
and an end. However, for some long duration sound, we speak of continuous wave (cw)
propagation and we define a root mean squared (rms) pressure pa,rms

pa,rms =

√√√√√ 1

T

t0+T∫
t0

(p− p0)2 dt =

√√√√√ 1

T

t0+T∫
t0

p2
a dt . (2.30)

In (2.30) T denotes the period time of the signal or if we cannot strictly speak of a periodic
signal, an interminable long time interval. Now, it has to be mentioned that the threshold
of hearing of an average human is at about 20µPa and the threshold of pain at about 20 Pa,
which differs 106 orders of magnitude. Thus, logarithmic scales are mainly used for acoustic
quantities. The most common one is the decibel (dB), which expresses the quantity as a ratio
relative to a reference value. Thereby, the sound pressure level Lpa

(SPL) is defined by

Lpa
= 20 log10

pa,rms

pa,ref
pa,ref = 20µPa . (2.31)

The reference pressure pa,ref corresponds to the sound at 1 kHz that an average person can
just hear.

In addition, the acoustic intensity Ia is defined by the product of the acoustic pressure and
particle velocity

Ia = pava . (2.32)

The intensity level LIa is then defined by

LIa = 10 log10

Iav
a

Ia,ref
Ia,ref = 10−12 W/m2 , (2.33)

with Ia,ref the reference sound intensity corresponding to pa,ref. Again, we use an averaged
value for defining the intensity level, which computes by

Iav
a = |Iav

a | =

∣∣∣∣∣∣ 1

T

t0+T∫
t0

vapa dt

∣∣∣∣∣∣ . (2.34)

Finally, we compute the acoustic power by integrating the acoustic intensity (unit W/m2)
over a closed surface

Pa =

∮
Γ

Ia · ds =

∮
Γ

Ia · n ds . (2.35)

Then, the sound-power level LPa computes as

LPa = 10 log10

P av
a

Pa,ref
Pa,ref = 10−12 W , (2.36)

with Pa,ref the reference sound power corresponding to pa,ref. In Tables 2.1 and 2.2 some
typical sound pressure and sound power levels are listed.
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Table 2.1.: Typical sound pressure levels SPL.

Threshold Voice Car Pneumatic hammer Jet
of hearing at 5 m at 20 m at 2 m at 3 m

0 dB 60 dB 80 dB 100 dB 140 dB

Table 2.2.: Typical sound power levels and in parentheses the absolute acoustic power Pa.

Voice Fan Loudspeaker Jet airliner

30 dB (25µW) 110 dB (0.05 W) 128 dB (60 W) 170 dB (50 kW)

A useful quantity in the acoustics is impedance, which is a measure of the amount by which
the motion induced by a pressure applied to a surface is impeded. However, a quantity that
varies with time and depends on initial values is not of interest. Thus the specific acoustic
impedance is defined by the Fourier transformation

Ẑa(x, ω) =
p̂a(x, ω)

v̂a(x, ω) · n(x)
, (2.37)

at a point x on the surface Γ with unit normal vector n. It is in general a complex number
and its real part is called resistance, its imaginary part reactance and its inverse the spe-
cific acoustic admittance denoted by Ŷa(x, ω). For a plane wave (see Sec. 2.2) the acoustic
impedance Ẑa is constant

Ẑa(x, ω) = ρ0c0 . (2.38)

For a quiescent fluid the acoustic power across a surface Γ computes for time harmonic
fields by

P av
a =

∫
Γ

 1

T

T∫
0

Re
(
p̂ae

jωt
)

Re
(
v̂a · nejωt

)
dt

 ds

=
1

4

∫
Γ

(p̂av̂
∗
a + p̂∗av̂a) · n ds

=
1

2

∫
Γ

Re (p̂∗av̂a) · n ds (2.39)

with ∗ denoting the conjugate complex. Now, we use the impedance Ẑa of the surface and
arrive at

P av
a =

1

2

∫
Γ

Re
(
Ẑa

)
|v̂a · n|2 ds . (2.40)

Hence, the real part of the impedance (equal to the resistance) is related to the energy flow.

If Re
(
Ẑa

)
> 0 the surface is passive and absorbs energy, and if Re

(
Ẑa

)
< 0 the surface is
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active and transfers energy into the acoustic system.

In a next step, we analyze what happens, when an acoustic wave propagates from one fluid
medium to another one. For simplicity, we restrict to a plane wave, which is described by
(see (2.15))

pa(t) = f(t− x/c0) + g(t+ x/c0) , (2.41)

In the frequency domain, we may write

p̂a = f̂ e−jωx/c0 + ĝejωx/c0 = p+ejωt−jkx + p−ejωt+jkx . (2.42)

Thereby, p+ is the amplitude of the wave incident at x = 0 from x < 0 and p− the amplitude of
the reflected wave at x = 0 by an impedance Ẑa. Using the linear conservation of momentum,
we obtain the particle velocity

v̂a(x) =
1

ρ0c0

(
p+e−jkx − p−ejkx

)
. (2.43)

Defining the reflection coefficient R by

R =
p−

p+
, (2.44)

we arrive with Ẑa = p̂(0)/v̂(0) at

R =
Ẑa − ρ0c0

Ẑa + ρ0c0

. (2.45)

In two dimensions, we consider a plane wave with direction (cos θ, sin θ), where θ is the
angle with the y-axis and the wave approaches from y < 0 and hits an impedance Ẑ at y = 0.
The overall pressure may be expressed by

p̂a(x, y) = e−jkx sin θ
(
p+e−ky cos θ + p−ejky cos θ

)
. (2.46)

Furthermore, the y-component of the particle velocity computes to

v̂a(x, y) =
cos θ

ρ0c0
e−jkx sin θ

(
p+e−ky cos θ − p−ejky cos θ

)
. (2.47)

Thereby, the impedance is

Ẑa =
p̂(x, 0)

v̂(x, 0)
=
ρ0c0

cos θ

p+ + p−

p+ − p−
=
ρ0c0

cos θ

1 +R

1−R
, (2.48)

so that the reflection coefficient computes as

R =
Ẑa cos θ − ρ0c0

Ẑa cos θ + ρ0c0

. (2.49)
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2.4. Impulsive sound sources

The sound being generated by a unit, impulsive point source δ(x)δ(t) is the solution of

1

c2
0

∂2ψa

∂t2
−∇ · ∇ψa = δ(x)δ(t) , (2.50)

with ψa the scalar acoustic potential. Now, since the source exists only for an infinitesimal
instant of time t = 0, the scalar potential ψa will be zero for t < 0. Due to the radially
symmetry, we may rewrite (2.50) in cylindrical coordinates for r = |x| > 0 by

1

c2
0

∂2ψa

∂t2
− 1

r2

∂

∂r

(
r2 ∂

∂r

)
ψa = 0 for r > 0 . (2.51)

According to Sec. 2.2 (see (2.22)) the solution is

ψa =
f(t− r/c0)

r
+
g(t+ r/c0)

r
. (2.52)

The first term represents a spherically symmetric wave propagating in the direction of increas-
ing values of r (outgoing wave) and the second term describes an incoming wave. Physically,
we have to set g to zero, since according to causality (also known as the radiation condition)
sound produced by a source must radiate away from this source.

To complete the solution, we have to determine the function f , which results in (see [?])

f(t− r/c0) =
1

4π
δ(t− r/c0) , (2.53)

and the solution becomes

ψa(x, t) =
1

4πr
δ(t− r/c0) =

1

4π|x|
δ(t− |x|/c0) . (2.54)

This represents a spherical pulse that is nonzero only on the surface of the sphere with
r = c0t > 0, whose radius increases with the speed of sound c0. It clearly vanishes everywhere
for t < 0. Compared to the solution of a potential flow generated by a pulsating sphere (see
Sec. 1.6) we have as an argument the retarded time.

2.5. Free space Green’s functions

The free-space Green’s function G(x,y, t− τ) is the causal solution of the wave equation by
an impulsive point source with strength δ(x−y)δ(t− τ) located at x = y at time t = τ . The
expression for G is simply obtained from (2.54), when we replace the source position x = 0
at time t = 0 by x− y at t− τ . This substitutions result in(

1

c2
0

∂2

∂t2
−∇ · ∇

)
G = δ(x− y)δ(t− τ) where G = 0 for t < τ , (2.55)

with

G(x,y, t) =
1

4π|x− y|
δ

(
t− τ − |x− y|

c0

)
. (2.56)
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This describes an impulsive, spherical symmetric wave expanding from the source at y (there-
fore y are called the source coordinates) with the speed of sound c0. The wave amplitude
decreases inversely with the distance to the observation point x.

Now, Green’s function is the fundamental building block for the computation of the inho-
mogeneous wave equation with any generalized source distribution F(x, t)(

1

c2
0

∂2

∂t2
−∇ · ∇

)
pa = F(x, t) . (2.57)

The key idea is that the source distribution is regarded as a distribution of impulsive point
sources

F(x, t) =

T∫
0

∞∫
−∞

F(y, τ)δ(x− y)δ(t− τ) dy dτ .

Therefore, the outgoing wave solution for each constituent source strength

F(y, τ)δ(x− y)δ(t− τ) ,

is given by
F(y, τ)G(x,y, t− τ) .

Therefore, the overall solution is obtained by adding up all the individual contributions

pa(x, t) =

T∫
0

∞∫
−∞

F(y, τ)G(x,y, t− τ) dy dτ

=
1

4π

T∫
0

∞∫
−∞

F(y, τ)

|x− y|
δ

(
t− τ − |x− y|

c0

)
dy dτ

=
1

4π

∞∫
−∞

F
(
y, t− |x−y|c0

)
|x− y|

dy . (2.58)

This integral formula is called a retarded formula, since it represents the pressure at position
x (observation point) and time t as a linear superposition of sources at y radiated at earlier
times t − |x − y|/c0. Thereby, the time of travel for the sound waves from the source point
y to the observer point x is |x− y|/c0.

In general, finding a (tailored) Green’s function of given configuration (including, e.g.,
scatterer) is only marginally easier than the full solution of the inhomogeneous wave equation.
Therefore, it is not possible to give a general recipe. However, it is important to note that often
we can simplify a problem already by the corresponding integral formulation (as done above)
using free field Green’s function. Furthermore, the delta-function source may be rendered
into a more easily treated from by spatial Fourier transform. Thereby, (2.56) leads to the free
field Green’s function in the frequency domain (setting τ = 0)

Ĝ(x, ω) =

∞∫
−∞

1

4π|x− y|
δ

(
t− |x− y|

c0

)
e−jωt dt

=
e−jkr

4πr
(2.59)

with r = |x− y| and k = ω/c0.
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2.6. Monopoles, dipoles and quadrupoles

A volume point source q(t)δ(x) as a model of a pulsating sphere (as considered in Sec. 1.6) is
called a monopole point source. Now, we consider a compressible fluid and the corresponding
wave equation (

1

c0

∂2

∂t2
−∇ · ∇

)
ψa = q(t)δ(x) .

The solution can be simply obtained by using (2.58), replacing pa by ψa and setting F(y, τ) =
q(τ)δ(y)

ψa(x, t) =
q(t− |x|/c0)

4π|x|
=
q(t− r/c0)

4πr
. (2.60)

This differs from the solution obtained within an incompressible fluid (see (1.87)) by the
dependence on the retarded time t − r/c0. Any change at the source is now communicated
to a fluid element at distance r after an appropriate estimated delay r/c0 required for sound
to travel outward from the source.

In a next step, we will investigate in a point dipole. Then, a source on the right hand side
of the wave equation (2.57) of the following type

F(x, t) = ∇ · (f(t)δ(x)) =
∂

∂xj
(fj(t)δ(x)) , (2.61)

is called a point dipole located at the origin. The sound generated by such a source computes
according to (2.58)

pa(x, t) =
1

4π

T∫
0

∞∫
−∞

∂

∂yj
(fj(t− |x− y|/c0) δ(y))

δ
(
t− |x−y|c0

)
|x− y|

dy dτ . (2.62)

In a first step, we perform an integration by parts and arrive at

pa(x, t) = − 1

4π

T∫
0

∞∫
−∞

fj(t− |x− y|/c0) δ(y)
∂

∂yj

δ
(
t− |x−y|c0

)
|x− y|

 dy dτ

+
1

4π

T∫
0

∫
Γ

(fj(t− |x− y|/c0) δ(y))
δ
(
t− |x−y|c0

)
|x− y|

n · ej ds dτ . (2.63)

Thereby the second integral has to be evaluated at a surface, for which yj = ±∞, and due to
the property of the delta function δ(y) = 0 at yj = ±∞ this integral vanishes. Furthermore,
we explore the relation

∂

∂yj

δ
(
t− |x−y|c0

)
|x− y|

 = − ∂

∂xj

δ
(
t− |x−y|c0

)
|x− y|

 , (2.64)
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and arrive at

pa(x, t) =
1

4π

T∫
0

∞∫
−∞

fj(t− |x− y|/c0) δ(y)
∂

∂xj

δ
(
t− |x−y|c0

)
|x− y|

 dy dτ

=
1

4π

∂

∂xj

T∫
0

∞∫
−∞

fj(t− |x− y|/c0) δ(y)
δ
(
t− |x−y|c0

)
|x− y|

dy dτ . (2.65)

Due to the property of the delta function, we can directly obtain the solution for the acoustic
pressure by

pa(x, t) =
∂

∂xj

(
fj(t− |x|/c0)

4π|x|

)
. (2.66)

Therefore, a distributed dipole source F(x, t) = ∇ ·f(x, t) results in the following expression
for the acoustic pressure

pa(x, t) =
1

4π

∂

∂xj

∞∫
−∞

fj(y, t− |x− y|/c0)

|x− y|
dy . (2.67)

A point dipole at the origin oriented in the direction of the unit vector n is entirely equiv-
alent to two point monopoles of equal but opposite strengths placed a short distance apart
(much smaller as the wavelength). Furthermore, a combination of four monopole sources,
whose net volume source strength is zero, is called a quadrupole. A general quadrupole is a
source distribution being characterized by a second space derivative of the form

F(x, t) =
∂2Lij
∂xi∂xj

. (2.68)

Here, Lij are the components of an arbitrary tensor. In the context of aeroacoustics, [L] will
denote the Lighthill tensor (see Sec. 3.1). Applying the procedure as in the case of the dipole
source two times results in the corresponding acoustic pressure

pa(x, t) =
1

4π

∂2

∂xi∂xj

∞∫
−∞

Lij(y, t− |x− y|/c0)

|x− y|
dy . (2.69)

2.7. Calculation of acoustic far field

We will now discuss useful approximations for the evaluation of

pa(x, t) =
1

4π

∞∫
−∞

F
(
y, t− |x−y|c0

)
|x− y|

dy , (2.70)

when computing the sound in the far field. Thereby, as mostly true for practical applications,
we assume that F(x, t) is nonzero only in a finite source region, as displayed in Fig. 2.3.
Furthermore, the source region contains the origin O of the coordinate system. In a first step,
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Figure 2.3.: Acoustic far field calculation.

we assume |x| � |y|, so that the following approximation will hold

|x− y| =
(
|x|2 − 2x · y + |y|2

) 1
2

= |x|
(

1− 2x · y
|x|2

+
|y|2

|x|2

) 1
2

≈ |x|
(

1− 2x · y
|x|2

) 1
2

≈ |x| − x · y
|x|

for
|y|
|x|
� 1 . (2.71)

In a second step, we investigate in the term 1/|x− y| using the above result

1

|x− y|
≈ 1

|x| − x·y
|x|

=
1

|x|

(
1

1− x·y
|x|2

)
. (2.72)

Now, we develop the term in the parenthesis in a Taylor series up to first order and arrive at

1

|x− y|
≈ 1

|x|

(
1 +

x · y
|x|2

)
=

1

|x|
+
x · y
|x|3

.

This approximation demonstrates that in order to obtain the far field approximation of (2.70),
which solution behaves like 1/r = 1/|x| as |x| → ∞, it is sufficient to replace |x − y| in the
denominator of the integrand by |x|. However, in the argument of the source strength F it
is important to retain possible phase differences between the sound waves generated by the
source distribution at location y. Therefore, we replace |x − y| in the source argument by
the approximation obtained in (2.71) and arrive at

pa(x, t) ≈ 1

4π|x|

∞∫
−∞

F
(
y, t− |x|

c0
+
x · y
c0|x|

)
dy , |x| → ∞ . (2.73)

This approximation when computing the acoustic far field is known as Fraunhofer approxima-
tion. The source region may extend over many characteristic wavelengths of the sound. By
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retaining the contribution x · y/(c0|x|) to the retarded time, we ensure that the interference
between waves generated at different positions within the source region is correctly described
by this far-field approximation. Let’s consider the setup as displayed in Fig. 2.3. The acoustic
travel time from a source point y to a far-field point x is equal to that from the point labelled
by A to x when x goes to infinity. The travel time over the distance OA computes by

tOA =
1

c0
y · ex =

1

c0
y · x
|x|

.

Therefore, the time obtained by |x|/c0−x ·y/(c0|x|) is the correct value of the retarded time
when x goes to infinity.

Let’s apply the above approximation for a dipole source distribution. In doing so, we use
the far-field formula according to (2.73) to a dipole source F(x, t) = ∇ · f(x, t) and obtain

pa(x, t) ≈ 1

4π|x|
∂

∂xj

 ∞∫
−∞

fj

(
y, t− |x|

c0
+
x · y
c0|x|

)
dy

 . (2.74)

In a next step we replace the space derivative with a time derivative, which is usually more
easily estimated in practical applications. This operation is done as follows

∂

∂xj
fj

(
y, t− |x|

c0
+
x · y
c0|x|

)
=

∂fj
∂t

∂

∂xj

(
t− |x|

c0
+
x · y
c0|x|

)
.

Now, the second term evaluates as

∂

∂xj

(
t− |x|

c0
+
x · y
c0|x|

)
= − 1

c0

∂|x|
∂xj

+
1

c0

∂

∂xj

(
x · y
|x|

)
= − 1

c0

xj
|x|

+
1

c0

yj |x| − x · y xj |x|−1

|x|2

= − 1

c0

xj
|x|

+
yj
c0|x|

− x · y xj
|x|3

≈ − 1

c0

xj
|x|

for |y| � |x| .

Collecting these results, we can provide the far-field approximation for a source dipole F = ∇·
f(x, t) as follows (cancelling all terms which are proportional to 1/|x|2 as well as x ·y xj/|x|4)

pa(x, t) ≈ −xj
4πc0|x|2

∂

∂t

 ∞∫
−∞

fj

(
y, t− |x|

c0
+
x · y
c0|x|

)
dy

 . (2.75)

Please note that the term
xj
|x|2

=
xj
|x|

1

|x|
=
xj
|x|

1

r
,

is not changing the rate of the amplitude decay, which is still given by 1/r. The first term
xj/|x| is the jth component of the unit vector x/|x| and so it does just influence the directivity
pattern (see Fig. 2.4 for the directivity of a dipole).

Furthermore, it is necessary to realize that the rule of interchanging a space derivative with
a time derivative is given by

∂

∂xj
≈ − 1

c0

xj
|x|

∂

∂t
. (2.76)
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

r

x1

x2

Figure 2.4.: Directivity of a dipole source. The plotted directivity is ∝ p2 (proportional to
the intensity).

2.8. Compactness

We consider a rigid sphere of radius a oscillating at a small amplitude of velocity Uex1 , as
displayed in Fig. 2.5. Assuming that a is very small, we may model the source as a point

x3

x2

x1

r



Figure 2.5.: Oscillating sphere, with radius a.

dipole of amplitude 2πa3U(t), so that the acoustic potential ψa computes by solving(
1

c2
0

∂2

∂t2
−∇ · ∇

)
ψa =

∂

∂x1

(
2πa3U(t)δ(x)

)
. (2.77)

According to (2.66), the solution is given by

ψa(x, t) =
∂

∂x1

(
2πa3U(t− |x|/c0)

4π|x|

)
. (2.78)
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With the following two relations

∂

∂x1

(
1

|x|

)
= − x1

|x|3
,

∂

∂x1
(U(t− |x|/c0) = −∂U(t)

∂t

1

c0

x1

|x|
,

and r = |x|, x1 = r cos Θ, we arrive at

ψa(x, t) = −a
3 cos Θ

2r2
U(t− |x|/c0)︸ ︷︷ ︸

near field

− a
3 cos Θ

2c0r

∂U(t− |x|/c0)

∂t︸ ︷︷ ︸
far field

. (2.79)

Thereby, we observe that the near-field term is dominant at sufficiently small distances r from
the origin

1

r
� 1

c0

1

U

∂U

∂t
∼ f

c0
=

1

λ
. (2.80)

Hence, the near-field term is dominated when

r � λ . (2.81)

The motion becomes incompressible when c0 →∞. In this limit, the solution reduces entirely
to the near-field term, which we also call the hydrodynamic near-field and its amplitude de-
creases like 1/r2 as r → ∞. Thereby, the retarded time can be neglected and the near-field
coincide with that of the incompressible potential flow.

In regions, e.g. at boundaries, where the acoustic potential ψa varies significantly over a
distance l, which is short compared to the wavelength λ, the acoustic field can be approximated
by the incompressible potential flow. We call such a region compact, and a source size much
smaller than λ is a compact source. For a precise definition, we define a typical time scale
τ (or angular frequency ω) and a length scale l. Then, the dimensionless form of the wave
equation reads

∂2ψa

∂x̃2
i

= He2∂
2ψa

∂t̃2
, (2.82)

with t̃ = t/τ = ωt and x̃i = xi/l. In (2.82) He denotes the Helmholtz number and computes
by

He =
l

c0τ
=
ωl

c0
=

2πl

λ
� 1 .

Note that the time derivative term in (2.82) is multiplied by the square of a Helmholtz-
number. Therefore, if He is small, we may neglect this term and the wave equation reduces
to

∇ · ∇ψa = 0 . (2.83)

Hence, we can describe the acoustic field by the incompressible potential flow, which allows
us to use incompressible potential flow theory to derive the local behavior of the acoustic field
in compact regions.
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2.9. Solution of wave equation using Green’s function

We consider a stationary medium, in which the acoustic field is computed by the linear wave
equation. The domain may include surfaces generating sound and surfaces, where the sound
waves are scattered, as displayed in Fig. 2.6. Our goal is to compute the acoustic pressure

vn

Radiating surface

Radiating sound waves

Scattering surface

Figure 2.6.: Radiating and scattering surfaces in a sound field.

pa at observer position x and time t due to some sources in space y and time τ . In doing so,
we write the wave equation in terms of y and τ

1

c2
0

∂2pa(y, τ)

∂τ2
− ∂2pa(y, τ)

∂y2
i

= 0 . (2.84)

In a next step, we introduce the Green’s function G being the solution of the inhomogeneous
wave equation

1

c2
0

∂2G

∂τ2
− ∂2G

∂y2
i

= δ(x− y) δ(t− τ) . (2.85)

Thereby, the Green’s function is distributed in space as a function of y and τ , but also depends
on the observer position x and time t, and so we write G = G(x, t|y, τ). Now, we multiply
(2.85) by pa(y, τ), (2.84) by G(x, t|y, τ) and subtract the so obtained equations to achieve at

1

c2
0

(
pa
∂2G

∂τ2
−G ∂2pa

∂τ2

)
−
(
pa
∂2G

∂y2
i

−G ∂2pa

∂y2
i

)
= δ(x− y) δ(t− τ) pa(y, τ) . (2.86)

Next, we integrate over τ and the volume Ω(y) and explore the property of the delta function

pa(x, t) =

∫
Ω

T∫
0

1

c2
0

(
pa
∂2G

∂τ2
−G ∂2pa

∂τ2

)
−
(
pa
∂2G

∂y2
i

−G ∂2pa

∂y2
i

)
dτ dy . (2.87)

The first integrand in (2.87) may be rearranged as follows(
pa
∂2G

∂τ2
−G ∂2pa

∂τ2

)
=

∂

∂τ

(
pa
∂G

∂τ
−G∂pa

∂τ

)
, (2.88)
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from which we obtain

∫
Ω

T∫
0

∂

∂τ

(
pa
∂G

∂τ
−G∂pa

∂τ

)
dτ dy =

∫
Ω

(
pa
∂G

∂τ
−G∂pa

∂τ

)τ=T

τ=0

dy . (2.89)

The integrand is zero at the lower limit τ = 0, when we specify pa and ∂pa/∂τ to be zero
at τ = 0. Furthermore, we explore the causality condition that sound heard at time t must
be generated at time τ < t. This implies that the Green’s function G(x, t|y, τ) and its time
derivative ∂G(x, t|y, τ)/∂τ is zero for τ ≥ t, so that the integrand at the upper limit is also
zero for t < T .

A similar expansion is done for the second term in (2.87) obtaining∫
Ω

(
pa
∂2G

∂y2
i

−G∂
2pa

∂y2
i

)
dy =

∫
Ω

∂

∂yi

(
pa
∂G

∂yi
−G∂pa

∂yi

)
dy . (2.90)

Here, we can use the divergence theorem to transform the volume integral into the enclosing
surface integral with normal vector pointing into the volume

pa(x, t) =

∫
Γ

T∫
0

(
pa(y, τ)

∂G(x, t|y, τ)

∂yi
−G(x, t|y, τ)

∂pa(y, τ)

∂yi

)
ni ds(y) dτ . (2.91)

In free field application, the Sommerfeld radiation condition eliminates the need to include
the exterior boundary in the surface integral. The resulting integral equation (2.91) solves the
linear acoustic wave equation and can be evaluated from knowledge of the pressure and the
pressure gradient on surfaces that bound the region of interest as well as other surfaces, i.e
scattering surfaces or sound generating surfaces. Furthermore, we need to know the Green’s
function, which must satisfy the inhomogeneous wave equation (2.85) and a causality con-
dition, e.g. free field Green’s function according to (2.56). Then we can use (2.91) for both
sound radiation and scattering problems involving prescribed surface motion and / or surface
pressure as displayed in Fig. 2.6. For radiating surfaces, the pressure gradient term can be
obtained by the acoustic momentum equation (2.7) as

∂pa

∂yi
ni = −ρ0

∂va,i

∂τ
ni = −ρ0

∂vn

∂τ
. (2.92)

Then, (2.91) may be rewritten as

pa(x, t) =

∫
Γ

T∫
0

(
pa(y, τ)

∂G(x, t|y, τ)

∂yi

)
ni ds(y) dτ +

∫
Γ

T∫
0

(
ρ0
∂vn

∂τ
G(x, t|y, τ)

)
ds(y) dτ .

(2.93)
Since for many cases, we perform computations in the frequency domain, we also provide
(2.91) in the frequency domain applying Fourier transform. Thereby, we obtain

p̂a(x, ω) =

∫
Γ

(
p̂a(y, ω)

∂Ĝ(x|y)

∂yi
− Ĝ(x|y)

∂p̂a(y, ω)

∂yi

)
ni ds(y) , (2.94)
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and for our special case of an radiating surface according to (2.93)

p̂a(x, ω) =

∫
Γ

(
p̂a(y, ω)

∂Ĝ(x|y)

∂yi

)
ni ds(y) +

∫
Γ

(
jωρ0v̂n Ĝ(x|y)

)
ds(y) , (2.95)

with Ĝ, i.e. using free field Green’s function according to (2.59).
As an example, let us compute the acoustic pressure generated by an pulsating sphere

with radius a and vibration velocity v̂n. Assuming the radius a to be very small, the spatial
dependency of Ĝ and ∂Ĝ/∂yi becomes negligible, and we may write for the far field solution

p̂a(x, ω) =

[
∂Ĝ

∂yi

]
yi=0

∫
Γ

pani ds(y) + [Ĝ]yi=0

∫
Γ

jωρ0v̂n ds(y) . (2.96)

The first term represents the net force exerted on the fluid by the sphere, and is zero because
the pressure is constant on the surface. Therefore, we obtain

p̂a(x, ω) =
jωρ0a

2v̂n

|x|
ejk|x| . (2.97)

For the general case, we often do not know pa(y) on the surfaces and (2.94) or (2.95)
cannot be directly solved. So, a numerical method, i.e. the boundary element method has to
be applied. However, in cases that the surface is a rigid scatterer, we get rid of the first term,
when we force ni∂Ĝ/∂yi to be zero. Such Green’s functions are called tailored (modified)
Green’s functions [?, ?]
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3. Aeroacoustics

3.1. Lighthill’s Acoustic Analogy

The sound generated by a flow in an unbounded fluid is usually called aerodynamic sound.
Most unsteady flows in technical applications are of high Reynolds number, and the acoustic
radiation is a very small by-product of the motion. Thereby, the turbulence is usually pro-
duced by fluid motion over a solid body and/or by flow instabilities. Lighthill transformed
the general equations of mass and momentum conservation to an exact inhomogeneous wave
equation whose source terms are important only within the turbulent region [?].

Lighthill was initially interested in solving the problem, illustrated in Fig. 3.1a, of the
sound produced by a turbulent nozzle flow and arrived at the inhomogeneous wave equation.
However, at this time a volume discretization by numerical schemes was not feasible and so a

sound

turbulent nozzle flow

v

(a) Turbulent nozzle flow.

sound

(b) Isolated turbulent region.

Figure 3.1.: Sound generation by turbulent flows.

transformation of the PDE into an integral representation was performed, which can just be
achieved for a free field setup, for which Green’s function is available. Therefore, Lighthill’s
theory in its integral formulation just applies to the simple situation as given in Fig. 3.1b.
This avoids complications caused by the presence of the nozzle. The fluid is assumed to
be at rest at the observer position, where a mean pressure, density and speed of sound are
respectively equal to p0, ρ0 and c0. So Lighthill compared the equations for the production of
density fluctuations in the real flow with those in an ideal linear acoustic medium (quiescent
fluid).

For the derivation, we start at Reynolds form of the momentum equation, as given by (1.18)
neglecting any force density f

∂ρv

∂t
+∇ · [π] = 0 , (3.1)

with the momentum flux tensor πij = ρvivj + (p− p0)δij − τij , where the constant pressure p0

is inserted for convenience. In an ideal, linear acoustic medium, the momentum flux tensor
contains only the pressure

πij → π0
ij = (p− p0)δij = c2

0(ρ− ρ0)δij , (3.2)

37



and Reynolds momentum equation reduces to

∂ρvi
∂t

+
∂

∂xi

(
c2

0(ρ− ρ0)
)

= 0 . (3.3)

Rewriting the conservation of mass in the form

∂

∂t
(ρ− ρ0) +

∂ρvi
∂xi

= 0 , (3.4)

allows us to eliminate the momentum density ρvi in (3.3). Therefore, we perform a time
derivative on (3.4), a spatial derivative on (3.3) and subtract the two resulting equations.
These operations lead to the equation of linear acoustics satisfied by the perturbation density(

1

c2
0

∂2

∂t2
−∇ · ∇

)(
c2

0(ρ− ρ0)
)

= 0 . (3.5)

Because flow is neglected, the unique solution of this equation satisfying the radiation condi-
tion and we obtain ρ− ρ0 = 0.

Now, it can be asserted that the sound generated by the turbulence in the real fluid is
exactly equivalent to that produced in the ideal, stationary acoustic medium forced by the
stress distribution

Lij = πij − π0
ij = ρvivj +

(
(p− p0)− c2

0(ρ− ρ0)
)
δij − τij , (3.6)

where [L] is called the Lighthill stress tensor. Indeed, we can rewrite (3.1) as the momentum
equation for an ideal, stationary acoustic medium of mean density ρ0 and speed of sound c0

subjected to the externally applied stress Lij

∂ρvi
∂t

+
∂π0

ij

∂xj
= − ∂

∂xj

(
πij − π0

ij

)
, (3.7)

or equivalent

∂ρvi
∂t

+
∂

∂xj

(
c2

0(ρ− ρ0)
)

= −∂Lij
∂xj

. (3.8)

By eliminating the momentum density ρvi using (3.4) we arrive at Lighthill’s equation(
1

c2
0

∂2

∂t2
−∇ · ∇

)(
c2

0(ρ− ρ0)
)

=
∂2Lij
∂xi∂xj

. (3.9)

It has to be noted that (ρ− ρ0) = ρ′ is a fluctuating density not being equal to the acoustic
density ρa, but a superposition of flow and acoustic parts within flow regions.

The problem of calculating the flow generated sound is equivalent to solving this wave
equation, which is possible when the source term ∂2Lij/∂xi∂xj is provided, e.g., by a CFD
computation. This type of source term can just be interpreted as a quadrupole term, when
free field conditions are assumed, i.e. no solid bodies are present. Therefore, the free field
turbulence is an extremely weak sound source, and so in low Mach number flows, just a very
small portion of the flow energy is converted into sound. However, in the presence of walls
the sound radiation by turbulence can be dramatically enhanced. In the next section, we will
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see that compact bodies will radiate a dipole sound field associated to the force which they
exert on the flow as a reaction to the dynamic force of the flow applied to them. Sharp edges
are particularly efficient radiators.

In the definition of the Lighthill tensor according to (3.6) the term ρvivj is called the
Reynolds stress. It is a nonlinear term and can be neglected except where the motion is tur-
bulent. The second term

(
(p− p0)− c2

0(ρ− ρ0)
)
δij represents the excess of moment transfer

by the pressure over that in the ideal fluid of density ρ0 and speed of sound c0. This is
produced by wave amplitude nonlinearity, and by mean density variations in the source flow.
The viscous stress tensor τij properly accounts for the attenuation of the sound. In most
applications the Reynolds number in the source region is high and we can neglect this con-
tribution.

The solution of (3.9) for free field radiation condition with outgoing wave behaviour can
be rewritten in integral form as follows (see sec. 2.6)

c2
0(ρ− ρ0)(x, t) =

1

4π

∂2

∂xi∂xj

∞∫
−∞

Lij(y, t− |x− y|/c0)

|x− y|
dy . (3.10)

Thereby, y defines the source coordinate and x the coordinate at which we compute the
acoustic density fluctuation. This provides a useful prediction of the sound, if Lij is known.
Please note that the terms in Lij not only account for the generation of sound, but also
includes acoustic self modulation caused by

� acoustic nonlinearity,

� the convection of sound waves by the turbulent flow velocity,

� refraction caused by sound speed variations,

� and attenuation due to thermal and viscous actions.

The influence of acoustic nonlinearity and thermoviscous dissipation is usually sufficiently
small to be neglected within the source region. Convection and refraction of sound within
the flow region can be important, e.g., in the presence of a mean shear layer (when the
Reynolds stress will include terms like ρv0iv

′
j , where v0 and v′ respectively denote the mean

and fluctuating components of v). Such effects are described by the presence of unsteady
linear terms in Lij . Furthermore, since for practical applications the source term is obtained
by numerically solving the full set of compressible flow equations, the question of how accurate
the source term is resolved, is always present.

In summary, Lighthill’s inhomogeneous wave equation equipped with appropriate boundary
conditions (e.g., sound hard at solid walls) correctly models all physical flow-acoustic effects.
However, the whole set of compressible flow dynamics equations have to be solved in order
to be able to calculate Lighthill’s tensor. However, this means that we have to resolve both
the flow structures and acoustic waves, which is an enormous challenge for any numerical
scheme and the computational noise itself may strongly disturb the physical radiating wave
components [?]. Therefore, in the theories of Phillips and Lilley interaction effects have been,
at least to some extend, moved to the wave operator [?, ?]. These equations predict certain
aspects of the sound field surrounding a jet quite accurately, which are not accounted for
Lighthill’s equation due to the restricted numerical resolution of the source term need in (3.9)
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[?].

For practical applications of Lighthill’s analogy, it would be quite beneficial to know the
leading order term of Lighthill’s tensor. This analysis has been done in [?] for low Mach
number flows in an isentropic medium by applying the method of matched asymptotic ex-
pansion (see, e.g., [?]). Sound emission from an eddy region involves three length scales: the
eddy size l, the wavelength λ of the sound, and a dimension L of the region. The problem
is solved for Ma � 1 and L/l ∼ 1 by matching the compressible eddy core scaled by l to a
surrounding acoustic field scaled by λ. Thereby, Lighthill’s solution is shown to be adequate
in both regions, if Lij is approximated by

Lij ≈ ρ0vic,ivic,j , (3.11)

with vic = ∇×ψ(ω) and vorticity ω = ∇× vic. Such a flow field is described by solving the
incompressible flow dynamics equations. Thereby, we obtain an incompressible flow velocity
vic and pressure pic. For an incompressible flow, the divergence of vic is zero, which allows to
rewrite the second spatial derivative of (3.11) by

∂2

∂xixj

(
ρ0vic,ivic,j

)
= ρ0

∂vic,j

∂xi

∂vic,i

∂xj
. (3.12)

Furthermore, applying the divergence to (1.18) provides the following equivalence (using
∇ · vic = 0 and assuming f = 0)

∇ · ∇pic = −ρ0
∂2vic,ivic,j

∂xi∂xj
. (3.13)

With such an approach, we totally separate the flow from the acoustic field, which also means
that any influence of the acoustic field on the flow field is neglected.

Now, using the approximation of Lighthill’s tensor for low Mach numbers according to (3.11)
and the isentropic pressure-density relation, we may write for free radiation the following
integral equation for the pressure fluctuation

p′(x, t) ≈ ∂2

∂xi∂xj

∫
ρ0vivj(y, t− |x− y|/c0)

4π|x− y|
dy (3.14)

≈ xixj
4πc2

0|x|3
∂2

∂t2

∫
ρ0vivj

(
y, t− |x|

c0
+
x · y
c0|x|

)
dy . (3.15)

To obtain (3.15), we have used the far field approximation, which allows the following substi-
tution (see Sec. 2.7)

∂

∂xj
≈ − 1

c0

xj
|x|

∂

∂t
. (3.16)

Now, we want to derive the order of the magnitude of the acoustic pressure as a function of
the flow velocity v. In doing so, we introduce a characteristic velocity v and length scale l of
a single vortex as displayed in Fig. 3.2. Fluctuations in vivj occurring in different turbulent
regions by distances larger than O(l) will be treated to be statistically independent. So the
sound may be considered to be generated by a collection of Ω f/l

3 independent vortices. The
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vortex

turbulent
source region

Ω f

l

x

Figure 3.2.: Single vortex in a turbulent flow region at its acoustic radiation towards the far
field.

characteristic frequency of the turbulent fluctuations can be estimated by f ∼ v/l so that the
wavelength λ of sound will result in

λ =
c0

f
∼ c0l

v
=

l

Ma
� l for Ma = v/c0 � 1 .

Hence, we arrive at the quite important conclusion that the turbulent vortices are all acousti-
cally compact. This means that in the relation (3.15) the retarded time variation x ·y/(c0|x|)
can be neglected. Therefore, the value of the integral over one source vortex in (3.15) can be
estimated to be of order ρ0v

2l3. The order of the magnitude for the time derivative in (3.15)
is estimated to be

∂

∂t
∼ v

l
.

Collecting all this estimates, we may now state that the acoustic pressure in the far-field,
generated by one vortex, satisfies

pa ∼
l

|x|
ρ0v

4

c2
0

=
l

|x|
ρ0v

2Ma2 . (3.17)

The acoustic power defined by

Pa =

∮
Γ

pava · ds =

∮
Γ

pava · n ds (3.18)

can be computed in the far-field with the relation va · n = pa/(ρ0c0) as follows

Pa =

∮
Γ

pa
2

ρ0c0
ds . (3.19)

This formula allows us to estimate the acoustic power generated by one vortex

Pa ∼ 4π|x|2 pa
2

ρ0c0
∼ l2ρ0v

8

c5
0

= ρ0 l
2 v3 Ma5 , (3.20)

which is the famous eighth power law.
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3.2. Curle’s Theory

The main restriction of Lighthill’s integral formulation is that it can just consider free ra-
diation. Therewith, it can not consider situations where there is any solid body within the
region. In [?] this problem was solved by deriving an integral formulation for the sound gen-
erated by turbulence in the vicinity of an arbitrary, fixed surface Γs as displayed in Fig. 3.3a.
Thereby the surface Γs is defined by the function f(x), which has the following property (see
Fig. 3.3b).

f(x) =


0 for x on Γs

< 0 for x within the surface
> 0 for x in Ω

This surface may either be a solid body, or just an artificial control surface used to isolate a

0

Ω
dΓ

Γs

Lij 6= 0

(a) Turbulent source region with solid body.

f < 0

f > 0

Γs(f = 0)

Ω

n

(b) Solid body.

Figure 3.3.: Setup for deriving Curle’s equation.

fixed region of space containing both solid bodies and fluid or just fluid.
To derive Curle’s equation we start with the momentum equation according to (3.8) and

multiply it with the Heaviside function H(f)

H(f)
∂ρvi
∂t

+H(f)
∂

∂xi

(
c2

0(ρ− ρ0)
)

= −H(f)
∂Lij
∂xj

. (3.21)

Using the product rule for differentiation (noting that the time derivative of the Heaviside
function, which just depends on space, is zero) and writing Lij by its individual components
yields

∂

∂t
(ρviH(f)) +

∂

∂xj

(
c2

0(ρ− ρ0)H(f)
)
− c2

0(ρ− ρ0)
∂H(f)

∂xi
(3.22)

= − ∂

∂xj
(LijH(f)) +

(
ρvivj +

(
(p− p0)− c2

0(ρ− ρ0)
)
δij − τij

)︸ ︷︷ ︸
Lij

∂H(f)

∂xj
.

We can cancel out the term c2
0(ρ − ρ0) ∂H(f)/∂xi being at both sides of the equation and
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arrive at

∂

∂t
(ρviH(f)) +

∂

∂xj

(
c2

0(ρ− ρ0)H(f)
)

= − ∂

∂xj
(LijH(f)) + (ρvivj + (p− p0) δij − τij)

∂H(f)

∂xj
. (3.23)

The same procedure is now applied to the mass conservation according to (3.4) and so we
obtain

∂

∂t
((ρ− ρ0)H(f)) +

∂

∂xi
(ρviH(f))− ρvi

∂H(f)

∂xi
= 0 . (3.24)

Now, we perform a time derivative to this equation and rearrange it for ρviH(f)

∂2

∂t∂xi
(ρviH(f)) =

∂

∂t

(
ρvi

∂H(f)

∂xi

)
− ∂2

∂t2
((ρ− ρ0)H(f)) . (3.25)

In a last step, we apply the divergence operation to (3.23) and substitute the expression for
ρviH(f) from (3.25)(

1

c2
0

∂2

∂t2
− ∇ · ∇

) (
c2

0(ρ− ρ0)H(f)
)

(3.26)

=
∂2LijH(f)

∂xi∂xj

− ∂

∂xi

(
(ρvivj + (p− p0)δij − τij)

∂H(f)

∂xj

)
+

∂

∂t

(
ρvj

∂H(f)

∂xj

)
.

This equation is now valid throughout the space, including the region enclosed by Γs. Further-
more, compared to Lighthill’s equation, we have obtained two additional terms on the right
hand side of the wave equation including space derivatives of the Heaviside function H(f).
Thereby, according to our previous investigation the second term on the right hand side
corresponds to a dipole and the third term to a monopole with the following interpretation:

� Γs is the boundary of a solid body:
In this case the surface dipole represents the production of sound by the unsteady force
that the body exerts on the exterior fluid, whereas the monopole is responsible for the
sound generated by volume pulsations (if any) of the body.

� Γs is just an artificial control surface:
The dipole and monopole sources account for the presence of solid bodies and turbulence
within Γs (when Lij is different from zero within Γs) and also for the interaction of sound
generated outside Γs with the fluid and solid bodies inside Γs.

To transform (3.26) to the corresponding integral representation is straight forward. Ac-
cording to the wave equation and its integral representation we obtain for the monopole
term

1

4π

∞∫
−∞

∂

∂t
〈ρvj〉

∂H(f)

∂yj

1

|x− y|
dy , (3.27)
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where 〈 〉 indicates that the terms have to be evaluated at retarted time (t− |x− y|/c0). For
the dipole term we obtain the following integral representation

1

4π

∂

∂xi

∞∫
−∞

〈ρvivj + (p− p0)δij − τij〉
∂H(f)

∂yj

1

|x− y|
dy . (3.28)

The last step is the handling of the Heaviside function, which has according to generalized
function theory the following property for an arbitrary smooth function Φ(x) [?]

∞∫
−∞

Φ(y)
∂H(f)

∂yj
dy =

∮
Γs

Φ(y)nj ds =

∮
Γs

Φ(y) dsj . (3.29)

Exploring this property, we finally arrive at Curle’s equation in integral form

c2
0(ρ− ρ0)H(f) =

∂2

∂xi∂xj

∫
Ω

〈Lij〉
4π|x− y|

dy

− ∂

∂xi

∮
Γs

〈ρvivj + (p− p0)δij − τij〉
4π|x− y|

dsj(y)

+
∂

∂t

∮
Γs

〈ρvj〉
4π|x− y|

dsj(y) . (3.30)

Now, let us restrict to a rigid body for which the flow velocity in normal direction on this
body is zero, so that (3.30) reduces to

c2
0(ρ− ρ0)H(f) =

∂2

∂xi∂xj

∫
Ω

〈Lij〉
4π|x− y|

dy

− ∂

∂xi

∮
Γs

〈(p− p0)δij − τij〉
4π|x− y|

dsj(y) . (3.31)

Assuming the body to be acoustically compact (Ma = v/c0 � 1), we may derive the scaling
law for the second term in (3.31) similar as done in the previous chapter. Thereby, we divide
the surface by independently radiating surface elements Γs/l

2 , and obtain the following
estimate of the acoustic power (3.20))

Pa ∼ 4π|x|2 pa
2

ρ0c0

Γs

l2
=

(
4π|x|2 l2

ρ0c0|x|2
ρ2

0v
4Ma2

)
Γs

l2

∼ ρ0Γsv
3Ma3 . (3.32)

So, we see that in case of a dipole we arrive at a sixth power law and compared to the
quadrupole we have a factor of 1/Ma2 being stronger.

Therefore, we can summarize that Lighthills’ inhomogeneous wave equation is a quite gen-
eral model to describe flow-induced sound. Solving this partial differential equation by the
correct boundary conditions, i.e. ∂p′/∂n = 0 at the surface of solid bodies, using a volume
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discretization method includes all sources of the sound. The additional source terms, as given
in (3.30) just come up, because the partial differential equation is converted to an integral
representation for which Greens’ function is needed. Furthermore, the solution is a fluctuating
pressure (density), which approaches the acoustic pressure (density) outside the flow region.

In a final step, we will demonstrate that Curle’s equation according to (3.30) can be also
obtained by solving Lighthill’s equation using the method of Green’s function as described in
Sec. 2.9. The detailed derivation can be found in [?]. Thereby, the following integral equation
is obtained

c2
0(ρ− ρ0) =

T∫
0

∫
Ω

∂2G

∂yi∂yj
Lij(y, τ) dy dτ

+

T∫
0

∫
Γ

((
(p− p0)δij − τij + ρvivj

)∂G
∂yi

+G
∂(ρvj)

∂τ

)
dsj(y) dτ . (3.33)

Now, we apply the free field Green’s function

G(x, t|y, τ) =
δ(t− τ − |x− y|/c0)

4π|x− y|
, (3.34)

with the properties
∂G

∂yi
= −∂G

∂xi
;

∂2G

∂yiyj
=

∂2G

∂xixj
, (3.35)

and we may rewrite (3.33) by

c2
0(ρ− ρ0) =

∂2

∂xi∂xj

T∫
0

∫
Ω

GLij(y, τ) dy dτ

+

T∫
0

∫
Γ

(
G
∂(ρvj)

∂τ

)
dsj(y) dτ

− ∂

∂xi

T∫
0

∫
Ω

(
(p− p0)δij − τij + ρvivj

)
G dsj(y) dτ . (3.36)

Now, we substitute the Green’s function according to (3.34) and perform the integration over
time to arrive at

c2
0(ρ− ρ0) =

∂2

∂xi∂xj

∫
Ω

〈Lij〉
4π|x− y|

dy

+
∂

∂t

∫
Γ

〈ρvj〉
4π|x− y|

dsj(y)

− ∂

∂xi

∫
Ω

〈(p− p0)δij − τij + ρvivj〉
4π|x− y|

dsj(y) , (3.37)
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where 〈 〉 indicates that the terms have to be evaluated at retarted time (t− |x− y|/c0). It
is easy to see that this equation fully coincide with (3.30).

Finally, we want to note that starting from Lighthill’s inhomogeneous wave equation, see
(3.9), we may also arrive at an internal equation, which not only takes into account stationary
scattering objects but also moving surfaces as occurring for propellers and helicopter rotor
noise. The resulting formulation is known as Ffowcs Williams and Hawkings equation and
a detailed derivation can be found in the original publication [?], or by a description being
more easily understandable, e.g., in [?].

3.3. Vortex Sound

For many applications at low Mach number it is more convenient to rewrite the noise produc-
ing parts of Lighthill’s tensor [L] by its local vorticity. The main advantage is that vortical
regions of the flow are much more concentrated then the region over which [L] is nonzero.

An eddy of size l with typical velocity U generates sound with frequencies of the order U/l.
The wavelength of the sound, λ = O(l/Ma), greatly exceeds the eddy size l of a low Mach
number flow. As shown in [?] (see Sec. 3.1) the leading order term at low Mach number flows
of Lighthill’s tensor is

L̃ij = ρ0vic,ivic,j . (3.38)

As discussed in Sec. 1.5, the incompressible flow velocity is defined by the vorticty ω according
to

vic = ∇x ×
∫
Ω

ω(y)

4π|x− y|
dy . (3.39)

Using the vector identities (B.13), (B.14) and the property ∇ · vic = 0, the reduced source
term of Lighthill’s inhomogeneous wave equation can be written as

∇ · ∇ · [L̃] = ρ0∇ · ∇ · (vic ⊗ vic) = ρ0∇ · (ω × vic) + ρ0∇ · ∇
(1

2
vic · vic︸ ︷︷ ︸

(∇2 1
2
v2ic)

)
. (3.40)

Substituting this result into Lighthill’s integral form results for (ρ− ρ0)(x, t) = ρ′(x, t) in

ρ′(x, t) =
ρ0

4πc2
0

∞∫
−∞

∫
Ω

(
∇ · (ω × vic) +∇2

(
v2

ic

2

))
δ(t− τ − |x− y|/c0)

|x− y|
dy dτ . (3.41)

In the usual way, we integrate by parts to transfer the derivatives to the Green’s function
(note that the surface integral vanishes)

ρ′(x, t) =
ρ0

4πc2
0

∞∫
−∞

∫
Ω

(
−(ω × vic)i

∂

∂yi

(
δ(t− τ − |x− y|/c0)

|x− y|

))
dy dτ

+
ρ0

4πc2
0

∞∫
−∞

∫
Ω

(
v2

ic

2

)
∂2

∂yi∂yj

(
δ(t− τ − |x− y|/c0)

|x− y|

)
dy dτ . (3.42)
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The Green’s function depends on |x− y| and so we can take relation (2.64) and arrive at

ρ′(x, t) =
ρ0

4πc2
0

∂

∂xi

∞∫
−∞

∫
Ω

(ω × vic)i
δ(t− τ − |x− y|/c0)

|x− y|
dy dτ

+
ρ0

4πc2
0

∂2

∂xi∂xj

∞∫
−∞

∫
Ω

v2
ic

2

δ(t− τ − |x− y|/c0)

|x− y|
dy dτ . (3.43)

Next, we use the δ-property to evaluate the τ -integral

ρ′(x, t) =
ρ0

4πc2
0

∂

∂xi

∫
Ω

(ω × vic)i(y, t− |x− y|/c0)

|x− y|
dy

+
ρ0

4πc2
0

∂2

∂xi∂xj

∫
Ω

1
2v

2
ic(y, t− |x− y|/c0)

|x− y|
dy . (3.44)

Further simplifications can be performed by turning to the far-field approximation. For the
case |x| � |y|we may use (see Sec. 2.7)

|x− y| ≈ |x| − x · y
|x|

;
1

|x− y|
≈ 1

|x|
;

∂

∂xi
≈ − xi

c0|x|
∂

∂t

and obtain

ρ′(x, t) =
−ρ0xi

4πc3
0|x|2

∂

∂t

∫
Ω

(ω × vic)i

(
y, t− |x|

c0
+
x · y
c0|x|

)
dy

+
ρ0

8πc4
0

∂2

∂t2

∫
Ω

v2
ic

(
y, t− |x|

c0
+
x · y
c0|x|

)
dy . (3.45)

The variation in retarted time can be expanded in a Taylor series

(·)
(
y, t− |x|

c0
+
x · y
c0|x|

)
= (·)

(
y, t− |x|

c0

)
+
x · y
c0|x|

∂

∂t
(·)
(
y, t− |x|

c0

)
+ ... . (3.46)

Since at low Mach number flows an eddy is compact, we can expect that the largest contri-
bution to the sound field is generated by the lowest-order term in the expansion. Thereby,
the total source strength

1

2

∫
Ω

v2
ic

(
y, t− |x|

c0

)
dy ,

is constant and therefore its time derivative is zero. This can be readily proofed from the
inviscid, incompressible momentum equation (see Sec. 1.5)

∂vic

∂t
+∇

(
pic

ρ0
+

1

2

(
vic

)2)
= −ω × vic , (3.47)

by taking the scalar product with vic and exploring ∇ · vic = 0

1

2

∂v2
ic

∂t
+∇ ·

(
vic

(
pic

ρ0
+
v2

ic

2

))
= 0 . (3.48)
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Integrating over all space and applying the divergence theorem shows that the second term
tends to zero by the order of |y|−3 as |y| → ∞. So a contribution to the far-field is just
provided by the effect of retarted time variation over the source region. However, this leads
to a contribution of order ρ0Ma5l/|x|, which is negligible.

Let us now consider the first integral in (3.45) and apply the expansion of retarted time
variation according to (3.46). This step results in

xi
|x|2

∂

∂t

∫
Ω

(ω × vic)i

(
y, t− |x|

c0
+
x · y
c0|x|

)
dy =

xi
|x|2

∂

∂t

∫
Ω

(ω × vic)i

(
y, t− |x|

c0

)
dy (3.49)

+
xixj
c0|x|3

∂2

∂t2

∫
Ω

yi(ω × vic)i

(
y, t− |x|

c0

)
dy .

Because the first integrand in (3.49) can be expressed via (B.13) as a divergence, it will vanish.
Therefore, the leading term in the far-field for the density fluctuation can be computed by

ρ′(x, t) =
−ρ0

4πc4
0|x|3

∂2

∂t2

∫
Ω

(x · y) (x · ω × vic)
(
y, t− |x|

c0

)
dy . (3.50)

As an example, we consider the radiation by an elliptical vortex [?]. The equation of the
ellipse can be written by

σ = a

(
1 + ε cos

(
2

(
ψ − 1

4
Ωt

)))
. (3.51)

Thereby, (σ, ψ) are the polar coordinates, (x1, x2.x3) the Cartesian coordinates, ε a small
parameter and ω = Ωez the uniform vorticity. When ε is small but finite, the elliptic cross-
section of the cylinder spins around its axis with angular velocity Ω/4, and the unsteadiness
induced in the flow radiates as sound. Lamb determined the velocity field with in the core
given by [?]

vic =
1

2
Ωσ
((
− sinψ − ε sin(ψ − Ωt/2)

)
ex +

(
cosψ − ε cos(ψ − Ωt/2)

)
ey

)
. (3.52)

Hence, inside the vortex core we obtain

ω × vic =
1

2
Ω2σ

((
− cosψ − ε cos(ψ − Ωt/2)

)
ex +

(
− sinψ − ε sin(ψ − Ωt/2)

)
ey

)
. (3.53)

and outside the term ω×vic is zero. To compute the sound field, we will use (3.50). However,
this two-dimensional problem has a source extended in y3-direction and so the source is
certainly not compact. So, the dependency of |x−y| has to be retained in y3, and we modify
(3.50) for our problem as follows

ρ′(x, t) = − ρ0

4πc4
0

∂2

∂t2

∫
Ω

(x1y1 + x2y2)(x · ω × vic)
(
y, t−

(
R2 + y2

3

)1/2
/c
)

(
R2 + y2

3

)3/2 dy , (3.54)

where R =
(
x2

1 + x2
2

)1/2
. Substituting the expression for ω×vic, the integral can be evaluated

over σ and ψ

ρ′(x, t) = −ρ0εΩ
4a4R2

128c4
0

∞∫
−∞

1(
R2 + y2

3)3/2
) cos

(
2θ − 1

2
Ωt+

Ω

2c0

(
R2 + y2

3

)1/2)
dy3 , (3.55)
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with x1 = R cos θ, x2 = R sin θ. For far-field points, for which ΩR � c0, the y3-integral may
be evaluated by changing the integration variable to y3/R and using the method of stationary
phase [?]. Thereby, we obtain

ρ′(x, t) = −ρ0εΩ
7/2a7/2

64c
7/2
0

(πa
R

)1/2
cos

(
2θ +

π

4
− Ω

2

(
t− R

c0

))
. (3.56)

A general equation for vortex sound has been derived based on Lighthill’s equation in [?]
and is well known as the equation of vortex sound. Thereby, the total enthalpy (see Sec. 1.5)

B =

∫
dp

ρ
+
v2

2
(3.57)

is used as the independent acoustic variable. The total enthalpy occurs naturally in Crocco’s
form of the momentum equation (see (1.68)). In an irrotational flow, this equation reduces
to

∂v

∂t
= −∇B , (3.58)

and therefore

B = −∂φ
∂t

, (3.59)

with φ(x, t) the velocity potential that determines the whole motion in irrotational regions
of a fluid. If the mean flow is at rest in the far-field, the acoustic pressure is given by

pa = ρ0B = −ρ0
∂φ

∂t
= ρ0

∂ψa

∂t
. (3.60)

To calculate the pressure in term of B elsewhere in the flow, we have to solve (3.57). Using
the relation (A.2), we may rewrite (3.57) by also exploiting (1.68) as follows

1

ρ

∂p

∂t
=

∂B

∂t
− v · ∂v

∂t

=
∂B

∂t
− v ·

(
−∇B − ω × v − ν∇× ω +

4

3
ν∇∇ · v

)
=

DB

Dt
+ νv ·

(
∇× ω − 4

3
ν∇∇ · v

)
. (3.61)

Neglecting the viscous term as justified in high Reynolds number flows, we obtain the following
general relation between p and B by

1

ρ

∂p

∂t
=
DB

Dt
. (3.62)

Now, multiplying Crocco’s equation (neglecting the viscous terms) by the density ρ and
taking the divergence, results in

∇ ·
(
ρ
∂v

∂t

)
+∇ · ρ∇B = −∇

(
ρω × v

)
. (3.63)
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Using the conservation of mass in the form of

∇ · v = −1

ρ

Dρ

Dt
,

we may rewrite the first term in (3.63) as

∇ ·
(
ρ
∂v

∂t

)
= ∇ρ · ∂v

∂t
+ ρ

∂

∂t

(
∇ · v

)
(3.64)

= ∇ρ · ∂v
∂t
− ρ ∂

∂t

(
1

ρ

Dρ

Dt

)
= ∇ρ · ∂v

∂t
− ρ ∂

∂t

(
1

ρ

∂ρ

∂t

)
− ∂v

∂t
· ∇ρ− ρv · ∇

(
1

ρ

∂ρ

∂t

)
= −ρ D

Dt

(
1

ρ

∂ρ

∂t

)
= −ρ D

Dt

(
1

ρc2

∂p

∂t

)
= −ρ D

Dt

(
1

c2

DB

Dt

)
. (3.65)

This relation is now substituted into (3.63) to achieve at the equation of vortex sound

D

Dt

(
1

c2

DB

Dt

)
− 1

ρ
∇ · ρ∇B =

1

ρ
∇
(
ρω × v

)
. (3.66)

This PDE clearly states that homentropic flow can generate sound only if moving vorticity
is present. The differential operator on the left hand side describes propagation of sound
through nonuniform flow.

3.4. Perturbation equations for low Mach number flows

The acoustic/viscous splitting technique for the prediction of flow induced sound was first
introduced in [?], and afterwards many groups presented alternative and improved formula-
tions for linear and non linear wave propagation [?, ?, ?, ?]. These formulations are all based
on the idea, that the flow field quantities are split into compressible and incompressible parts.

For our derivation, we introduce a generic splitting of physical quantities to the conserva-
tion equations. For this purpose, we choose a combination of the two splitting approaches
introduced above and define the following

p = p̄+ pic + pc = p̄+ pic + pa (3.67)

v = v̄ + vic + vc = v̄ + vic + va (3.68)

ρ = ρ0 + ρ1 + ρa . (3.69)

Thereby the field variables are split into mean and fluctuating parts just like in the LEE
(Linearized Euler Equations). In addition the fluctuating field variables are split into acoustic
and non-acoustic components. Finally, the density correction ρ1 is build in as introduced
above. This choice is motivated by the following assumptions
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� The acoustic field is a fluctuating field.

� The acoustic field is irrotational, i.e. ∇× va = 0.

� The acoustic field requires compressible media and an incompressible pressure fluctua-
tion is not equivalent to an acoustic pressure fluctuation.

By doing so, we arrive for an incompressible flow at the following perturbation equations1

∂pa

∂t
+ v · ∇pa + ρ0c

2
0∇ · va = −∂pic

∂t
− v · ∇pic (3.70)

ρ0
∂va

∂t
+ ρ0∇

(
v · va

)
+∇pa = 0 (3.71)

with spatial constant mean density ρ0 and speed of sound c0. This system of partial differential
equations is equivalent to the previously published ones [?]. The source term is the substantial
derivative of the incompressible flow pressure pic. Using the acoustic scalar potential ψa and
assuming a spacial constant mean density and speed of sound, we may rewrite (3.71) by

∇
(
ρ0
∂ψa

∂t
+ ρ0 v · ∇ψa − pa

)
= 0 , (3.72)

and arrive at

pa = ρ0
∂ψa

∂t
+ ρ0 v · ∇ψa . (3.73)

Now, we substitute (3.73) into (3.70) and arrive at

1

c2
0

D2ψa

Dt2
−∆ψa = − 1

ρ0c2
0

Dpic

Dt
;

D

Dt
=

∂

∂t
+ v · ∇ . (3.74)

This convective wave equation fully describes acoustic sources generated by incompressible
flow structures and its wave propagation through flowing media. In addition, instead of the
original unknowns pa and va we have know just the scalar unknown ψa. In accordance to the
acoustic perturbation equations (APE), we name this resulting partial differential equation
for the acoustic scalar potential as Perturbed Convective Wave Equation (PCWE) [?, ?].

Finally, it is of great interest that by neglecting the mean flow v̄ in (3.70), we arrive at the
linearized conservation equations of acoustics with ∂pic/∂t as a source term

1

ρ0c2
0

∂pa

∂t
+∇ · va =

−1

ρ0c2
0

∂pic

∂t
(3.75)

∂va

∂t
+

1

ρ0
∇pa = 0 . (3.76)

Again using the scalar potential ψ〉, we arrive at

1

c2
0

∂2ψa

∂t2
−∇ · ∇ψa =

−1

ρ0c2
0

∂pic

∂t
. (3.77)

1For a detailed derivation of perturbation equations both for compressible as well as incompressible flows, we
refer to [?]
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Furthermore, as done in the standard acoustic case, we may apply ∂/∂t to (3.75) and ∇· to
(3.76) and subtract the two resulting equations to arrive at

1

c2
0

∂2pa

∂t2
−∇ · ∇pa =

−1

c2
0

∂2pic

∂t2
. (3.78)

We call (3.77) and (3.78) the aeroacoustic wave equation (AWE). Please note, that this
equation can also be obtained by starting at Lighthill’s inhomogeneous wave equation for
incompressible flow, where we can substitute the second spatial derivative of Lighthill’s tensor
by the Laplacian of the incompressible flow pressure (see (3.13)). Using the decomposition of
the fluctuating pressure p′

p′ = pic + pa ,

results again into (3.78).

3.4.1. Linearized Euler Equations

The Euler’s equations are linearized around a mean component. The field variables (ρ,u, p)
are a temporal mean component (·) and a fluctuating component (·)′ – perturbation. The
LEE are written in their general form (neglecting thermal conductivity) as

∂ρ′

∂t
+ u · ∇ρ′ + u′ · ∇ρ+ ρ∇ · u′ + ρ′∇ · u = 0 (3.79)

∂u′

∂t
+ u · ∇u′ + u′ · ∇u+

1

ρ
∇p′ − 1

ρ2∇(p′p) = 0 (3.80)

∂p′

∂t
+ u · ∇p′ + u′ · ∇p+ κp∇ · u′ + κp′∇ · u = 0 (3.81)

3.4.2. Expansion about the Incompressible Flow

Hardin and Pope[?] used viscous/acoustic splitting technique to expand the flow state about
the incompressible flow (EIF), where they introduced a density correction ρ1

u = uic + u′

p = pic + p′ (3.82)

ρ = ρic + ρ1 + ρ′ .

3.4.3. Perturbed Compressible Equation

Seo and Moon [?] noticed that the viscous/acoustic formulation neglects coupling effects[?]
and they proposed the perturbed compressible equations (PCE). Linearization yields

∂ρ′

∂t
+ uic · ∇ρ′ + ρic∇ · u′ = 0 (3.83)

∂u′

∂t
+∇(uic · u′) +

1

ρic
∇p′ = 0 (3.84)

∂p′

∂t
+ uic · ∇p′ + κpic∇ · u′ + u′ · ∇pic = −dpic

dt
. (3.85)
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3.4.4. Acoustic Perturbation Equation

Acoustic perturbation equations[?] are a general set of different acoustic propagation models
that consider different source models. In general there are four different equations known
APE-1, APE-2, APE-3, and APE-4. The operator and the sources are filtered by the acous-
tic modes. The perturbed convective wave equation is based on the APE-2. E.g. APE-1
formulation

∂p′

∂t
+ c2∇ ·

(
ρua + u

p′

c2

)
= c2

(
−∇ρ · uv +

ρ

cp

ds′

dt

)
(3.86)

∂ua

∂t
+∇(u · ua) +∇p

′

ρ
= ∇ΦP +∇qω + T ′∇s− s′∇T . (3.87)

3.4.5. Mach number scaling

Historically, the next idea was to scale the acoustic variables by the Mach number [?]. The
field variables are decomposed

u = uic + Mau′

p = p(0) + Ma2(pic + p′) (3.88)

ρ = ρ(0) + Ma2(ρic + ρ′) .

The equations are constituted as

∂ρ′

∂t
+ uic · ∇ρ′ + ρ(0)

Ma
∇ · u′ = −∂ρ

ic

∂t
− uic · ∇ρic (3.89)

∂u′

∂t
+∇ · (uicu′ + u′uic) +

1

Maρ(0)
∇p′ = 0 (3.90)

∂p′

∂t
+ uic · ∇p′ + κp(0)

Ma
∇ · u′ = −∂p

ic

∂t
− uic · ∇pic . (3.91)

3.5. Comparison of Different Aeroacoustic Analogies

As a demonstrative example to compare the different acoustic analogies, we choose a cylinder
in a cross flow, as displayed in Fig. 3.4. Thereby, the computational grid is just up to the
height of the cylinder and together with the boundary conditions (bottom and top as well
as span-wise direction symmetry boundary condition), we obtain a pseudo two-dimensional
flow field. The diameter of the cylinder D is 1 m resulting with the inflow velocity of 1 m/s
and chosen viscosity in a Reynolds number of 250 and Mach number of 0.2. From the flow
simulations, we obtain a shedding frequency of 0.2 Hz (Strouhal number of 0.2). The acoustic
mesh is chosen different from the flow mesh, and resolves the wavelength of two times the
shedding frequency with 10 finite elements of second order. At the outer boundary of the
acoustic domain we add a perfectly matched layer to efficiently absorb the outgoing waves.
For the acoustic field computation we use the following formulations:

� Lighthill’s acoustic analogy with Lighthill’s tensor [L] according to (3.11) as source term
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Figure 3.4.: Computational setup for flow computation.

Lighthill: ∇ · ∇ · [L] Lighthill: ∇ · ∇pic

AWE: 1/c2
0 ∂

2pic/∂t
2 PCWE: ∂pic/∂t

Figure 3.5.: Computed acoustic field with the different formulations.

� Lighthill’s acoustic analogy with the Laplacian of the incompressible flow pressure pic

as source term (see (3.13))
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� the aeroacoustic wave equation (AWE) according to (3.78)

� Perturbed Convective Wave Equation (PCWE) according to (3.74); for comparison, we
set the mean flow velocity v̄ to zero.

Figure 3.5 displays the acoustic field for the different formulations. One can clearly see that
the acoustic field of PE (for comparison with the other formulations we have neglected the
convective terms) meets very well the expected dipole structure and is free from dynamic
flow disturbances. Furthermore, the acoustic field of AWE is quite similar and exhibits
almost no dynamic flow disturbances. Both computations with Lighthill’s analogy show
flow disturbances, whereby the formulation with the Laplacian of the incompressible flow
pressure as source term shows qualitative better result as the classical formulation based on
the incompressible flow velocities.

3.6. Towards general aeroacoustics (Supplementary)

In 2003, Goldstein proposed a method to split flow variables (p,u, ...) into a base flow (non-
radiating) and a remaining component (acoustic, radiating fluctuations) [?]

? = ?̃+ ?′ . (3.92)

Applying the decomposition to the right hand side of the wave equation (the left hand side of
the equation is already treated in this manner during the derivation of the acoustic analogy)
leads to

2p′ = RHS(p̃, ṽ, ρ̃, p′,v′, ρ′, ...) . (3.93)

Now interaction terms can be moved to the differential operator to take, e.g., convection and
refraction effects into account, and even nonlinear interactions can be considered. Therefore,
we propose the three steps to relax the Mach number constraint imposed by the incompressible
flow simulation:

1. Perform a compressible flow simulation, which incorporates two-way coupling of flow
and acoustics.

2. Filtering of the flow field, such that we obtain a pure non-radiating field from which we
compute the acoustic sources.

3. Solve with an appropriate wave operator for the radiating field

2p′ = RHS(p̃, ṽ, ρ̃, ...) . (3.94)

The non-radiating base flow is obtained by applying a Helmholtz-Hodge decomposition (see
Sec. 1.6). For the computation of the wave propagation, we apply the equation of vortex
sound (3.66). Assuming a homogeneous medium, we solve

1

c2
0

D

Dt2
B −∇ · ∇B = ∇ · (ω × v) = ∇ ·La(v) , (3.95)
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with a constant isentropic speed of sound c0 and density ρ0. The wave operator is of convective
type, where the total derivative (material derivative) is defined as D

Dt = ∂
∂t ?+(ṽ · ∇)?. The

aeroacoustic source term is known as the divergence of the Lamb vector La

La(v) = (ω × v) = (ω × ṽ) +
(
ω × v′

)
with ω′ = ∇× v′ = 0 . (3.96)

The second term in (3.96) is now no more a source term, but an interaction term between the
base and radiating flow. In our formulation, the Lamb vector in terms of the non-radiating
base flow ṽ reads as follows

La(ṽ) = (ω × ṽ) , (3.97)

and we will not consider the second term in (3.96) within the wave operator.

Naturally, the incompressibility condition (regarding the concept of a non-radiating base
flow of Goldstein) leads to the Helmholtz-Hodge decomposition of the flow field. We propose
an additive splitting on the bounded problem domain Ω of the velocity field v ∈ L2(Ω) in
L2-orthogonal velocity components

v = vv + vc + vh = ∇×A+∇φc + vh , (3.98)

where vv represents the solenoidal (vortical, non-radiating base flow) part, vc the irrotational
(radiating) part and vh the harmonic (divergence-free and curl-free) part of the flow velocity.
The scalar potential φc is associated with the compressible part and the property ∇×vc = 0,
whereas the vector potential A describes the vortical flow (solenoidal part of the velocity
field), satisfying ∇ · vv = 0.

Based on the decomposition (3.98) we apply the curl to (3.98) and obtain the vector valued
curl-curl equation with the vorticity ω = ∇× v as forcing

∇×∇×A = ∇× v = ∇× vv = ω . (3.99)

To obtain a unique solution according to the Helmholtz-Hodge decomposition (see Sec. 1.6),
we apply homogeneous boundary condition according to

n×A = 0

on the boundary Γ. The function space W for the vector potential

W = {ϕ ∈ H(curl,Ω)|n×ϕ = 0 on Γ1,2,3,4}

requires a finite element discretization with edge elements (Nédélec elements) [?].

We demonstrate the proposed method for the aeroacoustic benchmark case [?], cavity with
a lip. The geometrical properties are given in Figs. 3.6 and 3.7, with all spatial dimensions
in mm.

The deep cavity has a reduced cross-section at the orifice (Helmholtz resonator like geom-
etry) and the cavity separates two flat plate configurations. The Helmholtz resonance of the
cavity is at about 4.4 kHz. The flow, with a free-stream velocity of U∞ = 50 m/s, develops
over the plate up to a boundary layer thickness of δ = 10 mm. For this configuration we
expect the first shear layer mode at about fs1 = 1.7 kHz.
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Flow, ΩF

Propagation,
ΩP

Γ1

Γ2

Γ3

Γ4

Figure 3.6.: The flow domain ΩF is a subdomain of the acoustic domain ΩA, which includes
the flow domain as its source domain and the propagation domain ΩP.

U∞ = 50m/s

δ = 10

8.7

24
.7

3.
3

15.9
Measurement: Pressure C1

All spatial dimensions in mm

Figure 3.7.: The geometry and the flow configuration of the benchmark problem, cavity with
a lip.

The unsteady, compressible, and laminar flow simulation is performed with a prescribed
velocity profile v = vin at the inlet Γ1, a no slip and no penetration condition v = 0 for the
wall Γ2, an enforced reference pressure p = pref at the outlet Γ3, and a symmetry condition
v · n = 0 at the top Γ4 (see Fig. 3.6). We used the commercial CFD software Ansys-Fluent.

The compressible flow simulation predicts the first shear layer mode at fs1 = 1.7 kHz
accurately (see Fig. 3.8), which is also confirmed by measurements [?]. An incompressible
simulation misinterprets the physics and predicts a shear layer mode of second type [?].
However, Fig. 3.8 also shows a strong peak at 1400 Hz and two minor peaks at around
1150 Hz. The artificial computational domain resonances are excited by compressible effects.
This shows how important it is to model boundaries with respect to the physical phenomena.

A direct numerical simulation using a commercial flow solver, resolving flow and acoustic,
suffers the following main drawbacks. First, transmission boundaries for vortical and wave
structures are limited and often inaccurate. In computational fluid dynamics the boundaries
are optimized to propagate vortical structures without reflection. But in contrast to that, the
radiation condition of waves are not modelled precisely and, as depicted in Fig. 3.9, artificial
computational domain resonances superpose the dominant flow field. The state of the art
modelling approach in flow simulation utilizes sponge layer techniques, to damp acoustic
waves towards the boundaries, so that they have no influence on the simulation with respect
to the wave modelling. Second, low order accuracy of currently available commercial flow
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Figure 3.8.: The wall pressure level (WPL) of the compressible flow simulation at the obser-
vation point C1 in the cavity. The physical 1st shear layer mode at 1680 Hz and
the artificial computational domain resonances are located around 1100Hz. The
reference pressure is 20µPa.

 -50                               0                                 50 

Figure 3.9.: The rate of expansion ∇·v of the compressible flow simulation at a representative
time step. The figure demonstrates the presence of standing waves due to the
boundary conditions of the compressible flow simulation.

simulation tools and the numerical damping dissipates the waves before they are propagated
into the far field. Third, a relatively high computational cost to resolve both flow and acoustics
exists.

For each time step of the compressible flow computation, we solve (3.99) and obtain the
vortical velocity field. As displayed in Fig. 3.10, no singularities at the reentrant corners arise
and the overall extracted non-radiating velocity field contains all divergence-free components.
This method tackles the compressible phenomena inside the domain ΩF by filtering the domain
artifacts of the compressible flow field such that the computed sources are not corrupted.
Figure 3.11 illustrates the shape and nature of the Lamb vector for a characteristic time step.
As one can see, there is almost no visible difference in the source term. Therefore, we have
performed a Fourier-transform and display in Fig. 3.12 the x− and y− components of the
obtained Lamb vectors in the frequency domain at the first shear layer mode (1660 Hz). Now,
the difference in the spatial distribution gets visible.

The acoustic simulation utilizes the equation of vortex sound (3.95) to compute the acous-
tic propagation applying the finite element method by using the in-house solver CFS++ [?].
The Doppler effect is included in the convective property of the wave operator. Upstreams
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 0                                                                     50 

Figure 3.10.: The magnitude of the incompressible component of the flow velocity (at a char-
acteristic time step) captures the vortical flow features of the simulation.

the wavefront reduces its wavelength and downstream the distance between the peaks of
the wavefront are enlarged. The finite element domain consists of three sub-domains being
independently discretized and connected by non-conforming Nitsche-type mortaring[?]. The
acoustic sources are prescribed in the source domain and a final outer perfectly matching layer
ensures accurate free field radiation. Two different aeroacoustic source variants are investi-
gated, the uncorrected Lamb vector La(v) (field quantities directly from the flow simulation)
and the corrected Lamb vector La(ṽ) based on the Helmholtz-Hodge decomposition in the
vector potential formulation. Figure 3.13 compares the resulting acoustic fields. As expected,
the acoustic field computed by the corrected source term is strongly reduced in amplitude
and shows a typically wave propagation, whereas Fig. 3.13a shows perturbations.

In the far-field, the relation (3.60) allows to compute the acoustic pressure and thereby the
sound pressure level (SPL) by

SPL = 20 log

(
ρ0B̂

pa ref

)
(3.100)

with B̂ the Fourier-transformed total enthalpy and pa ref being 20µPa. The plotted sound
spectra of the computations in the far field as shown in Fig.3.14 reveal that the SPL of
the non-corrected source terms are much higher. Furthermore, the spectrum obtained by
the corrected source term mainly reveals the physical 1st shear layer mode and strongly
suppresses all artificial domain resonance modes. Table 3.1 quantifies the obtained results in
the far field, where the computed 2D acoustic sound pressure has been scaled according to
[?] for comparison with the measured data. Thereby, the computations of the non-corrected
source terms overestimate the experimental result by 22 dB. In the case of the corrected source
terms, the overestimation is just 4 dB. These results strongly demonstrates the applicability

fs1/Hz SPLs1/dB

Experiment 1650 30
Simulation La(ṽ) = ω × ṽ 1660 34
Simulation La(v) = ω × v 1660 52

Table 3.1.: Comparison of the pressure outside the cavity

of our Helmholtz-Hodge decomposition approach.
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0 1

Lamb vector scaled by x 106 in (m/s2)

(a) ||La(ṽ) = ω × ṽ||

(b) ||La(v) = ω × v||

Figure 3.11.: Comparison of the Lamb vector for the corrected and the non-corrected calcu-
lation (at a characteristic time step).

(a) x− component of Lamb vector (b) y− component of Lamb vector

(c) x− component of corrected Lamb vector (d) y− component of corrected Lamb vector

Figure 3.12.: Comparison of the Lamb vector for the corrected and the non-corrected calcu-
lation at the first shear layer mode.
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(a) La(v) = ω × v, not corrected (b) La(ṽ) = ω × ṽ, corrected

Figure 3.13.: Field of the total enthalpy fluctuation H at a characteristic time. (a) Aeroa-
coustic sources are due to a compressible flow simulation without applying the
correction. (b) Aeroacoustic sources of the wave equation are due to a com-
pressible flow simulation applying the correction.

Figure 3.14.: Comparison of the SPL level outside the cavity. The spectrum of the corrected
Lamb vector formulation reveals that only the shear layer mode is present.
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4. Homework

4.1. Questions and exercises

1. Use Reynolds transport theorem

D

Dt

∫
Ω
γ(x, t) dx =

∫
Ω

(
∂γ(x, t)

∂t

∣∣∣∣
x

+∇ · (γv)

)
dx

to arrive the conservation of mass for fluids.

2. The conservation of momentum is given by

ρ
∂v

∂t
+ ρv · ∇v = −∇p+∇ · τ + f

Rewrite this equation with Einstein’s index notation.

3. What tells us the Helmholtz decomposition? Apply it to the flow velocity and discuss
the individual terms.

4. Show that the compressibility of a flow can be described by a scalar potential.

5. What is the vorticity and how is it computed?

6. Derive conservation equations for linear acoustics (isentropic case) with a background
flow by using the following perturbation ansatz

pa = p− p0 ; ρa = ρ− ρ0 ;va = v − v0 .

Assume that the mean quantities p0, ρ0 do not depend on space and time and that the
mean background velocity v0 does not depend on time. Can you also obtain a wave
equation?

7. We assume a breathing sphere of radius R = 0.1 m. At a distance of 5 m, an SPL of
80 dB at 1 kHz is measured. Compute the acoustic intensity as well as the total acoustic
power radiated by the vibrating sphere.

8. Which conditions have to be fulfilled for a region to be acoustically compact? For
such an case, the acoustic wave equation can be simplified to which one? Explain the
procedure.

9. How many dB decay do you notice when moving away radially (r1 = 1m,r2 = 2m) of a
point source in 3D? (Explain your decision)

10. Monopole, Dipole, Quadrupole: explain the radiation characteristics?

62



11. The acoustic pressure in the far field, generated by one vortex, can be estimated by

pa ∼ l

|x|
ρ0v

4

c2
0

Compute the acoustic power and show the scaling towards the Mach number!

12. Having seen the derivation of the 8th power law, derive the 6th power law for rigid
surfaces appearing in Curl’s analogy.

13. What is the main difference between an incompressible and a compressible flow simu-
lation with respect to sound propagation?

14. What is the difference between perturbation equations and acoustic analogies?

15. Derive the aeroacoustic wave equation (AWE) by starting at Lighthill’s inhomogeneous
wave equation (with the Laplacian of the incompressible flow pressure as source term)

1

c2
0

∂2p′

∂t2
−∇ · ∇p′ = −∇ · ∇pic

and substitute the decomposition of the fluctuating pressure

p′ = pic + pa .

Does AWE consider convection and refraction effects?

16. What would you do? A cavity is whistling at a specific frequency; how do you detect
the mechanism?

4.2. Square cylinder in a cross-flow

We consider a 2D rectangular cylindrical obstacle (b = 0.1m, ρ = 1kg/m3, c = 50m/s, U0 =
10m/s, ν = 10−3m2/s) in a cross-flow (see Fig. 4.1) under ambient pressure.

Figure 4.1.: Dimensions of the obstacle.

1. Calculate the dimensionless number (Mach, Reynolds, Strouhal, Helmholtz) for the
cylinder in a crossflow. Falsify if continuum theory is applicable by Knudsen number.
(Explain your decision)

2. Describe the transition of the wake for different Reynolds numbers; provide at least two
peer-reviewed articles describing this state.
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3. Is the cylinder acoustically compact with respect to the radiated base frequency? (Ex-
plain your decision)

4. Solving Lighthill inhomogeneous wave equation, what would be the correct boundary
condition on the surface of the cylinder?

5. Is the integral representation of Lighthill applicable to this example? (Explain your
decision)
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Appendices
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A. Special properties

Assuming a physical quantity ξ to be only a function of η

ξ = f(η) ,

then the following properties hold

∇
∫

dη

ξ(η)
=

1

ξ(η)
∇η (A.1)

∂

∂t

∫
dη

ξ(η)
=

1

ξ(η)

∂η

∂t
. (A.2)

This can be easily proofed, by defining F (η) as the antiderivative of f(η). Then, we have

∇
∫

dη

ξ(η)
= ∇

(
F (η) + const.

)
(A.3)

= F ′∇η =
1

ξ(η)
∇η . (A.4)

A similar proof is given for (A.2).
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B. Vector identities and operations in
different coordinate systems

The nabla operator is defined by

∇ =
∂

∂x
ex +

∂

∂y
ey +

∂

∂z
ez , (B.1)

with the unit vectors ex, ey and ez. Thereby, the gradient of a scalar function φ results in a
vector field and computes by

∇φ =


∂φ
∂x

∂φ
∂y

∂φ
∂z

 . (B.2)

The divergence of a vector field results in a scalar value

∇ · u =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

. (B.3)

Finally, the curl of a vector u computes as

∇× u =


ex ey ez
∂
∂x

∂
∂y

∂
∂z

ux uy uz

 =


∂uz
∂y −

∂uy
∂z

∂ux
∂z −

∂uz
∂x

∂uy
∂x −

∂ux
∂y

 . (B.4)

In addition, the gradient of a vector u computes by

∇u =
∂ui
∂xj

=


∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy
∂x

∂uy
∂y

∂uy
∂z

∂uz
∂x

∂uz
∂y

∂uz
∂z

 . (B.5)

By using the definitions of gradient, divergence, and curl, the following relations hold

∇(ξη) = ξ∇η + η∇ξ (B.6)

∇ · (ξu) = ξ∇ · u+ u · ∇ξ (B.7)

∇ · (u1 × u2) = u2 · ∇ × u1 − u1 · ∇ × u2 (B.8)

∇× (ξu) = ξ∇× u− u×∇ξ (B.9)

∇ · ∇u = ∇(∇ · u)−∇× (∇× u) (B.10)

∇× (u× v) = (v · ∇)u− v (∇ · u)− (u · ∇)v + u (∇ · v) (B.11)

ξ u · ∇u = ∇ · (ξuu)− u∇ · ξu (B.12)

u · ∇u = ∇× u × u+∇1

2
u2 (B.13)

∇ · (v ⊗ v) = v · ∇v + v∇ · v . (B.14)
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These relations combine the essential differential operators and build up a basis for the de-
scription of physical fields.

Furthermore, we introduce the Laplace operator applied to scalar quantity

∇ · ∇φ = 4φ = (∇ · ∇)φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
, (B.15)

and for a vector u

(∇ · ∇)u = 4u =


∂2ux
∂x2

+ ∂2ux
∂y2

+ ∂2ux
∂z2

∂2uy
∂x2

+
∂2uy
∂y2

+
∂2uy
∂z2

∂2uz
∂x2

+ ∂2uz
∂y2

+ ∂2uz
∂z2

 . (B.16)

The following operations always result in zero

∇× (∇φ) = 0 ; ∇ · (∇×∇u) = 0 . (B.17)

In a next step, we will define the above introduced vector operations in the cylindrical
coordinate system. In doing so, we have (see Fig. B.1a)

x = r cosϕ ; y = r sinϕ ; z = z , (B.18)

and

u = urer + uϕeϕ + uzez (B.19)

er = cosϕ ex + sinϕ ey + ez (B.20)

eϕ = − sinϕ ex + cosϕ ey (B.21)

ez = ez (B.22)

∇ = er
∂

∂r
+
eϕ
r

∂

∂ϕ
+ ez

∂

∂z
. (B.23)

Therefore, we obtain for the gradient, divergence and curl operations in cylindrical coordi-

3/2 π

P(r,φ,z)

1/2 π

π

0

φ
r

z

x y

z

(a) Cylindrical coordinate system. (b) Volume element.

Figure B.1.: Cylindrical coordinate systems.
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nates the following formulas

∇φ =


∂φ
∂r

1
r
∂φ
∂ϕ

∂φ
∂z

 (B.24)

∇ · u =
1

r

∂(rur)

∂r
+

1

r

∂uϕ
∂ϕ

+
∂uz
∂z

(B.25)

∇× u =
1

r


er reϕ ez
∂
∂r

∂
∂ϕ

∂
∂z

ur ruϕ uz

 =


1
r

(
∂uz
∂ϕ −

∂(ruϕ)
∂r

)
r ∂ur∂z − r

∂uz
∂r

1
r

(
∂(ruϕ)
∂r − ∂ur

∂ϕ

)
 . (B.26)

Furthermore, the Laplacian of a scalar function φ computes by

∇ · ∇φ =
1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂ϕ2
+
∂2φ

∂z2
. (B.27)

Performing an integration in cylindrical coordinates, needs a transformation for the volume
element (see Fig. B.1b)

dΩ = r dr dϕdz . (B.28)

Therefore, we obtain∫
Ω

f(x, y, z) dx dy dz =

∫
z

∫
r

∫
ϕ

f(r, ϕ, z) r dϕdr dz . (B.29)

Furthermore, we also provide all these relations for spherical coordinates. Thereby, we have

3/2 π P(r,φ,θ)

0r

θ

r

1/2 π

π

0

φ

x y

z

(a) Spherical coordinate system. (b) Volume element.

Figure B.2.: Spherical coordinate systems

the relations (see Fig. B.2a)

x = r cosϕ sinϑ ; y = r sinϕ sinϑ ; z = r cosϑ , (B.30)
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and

u = urer + uϕeϕ + uϑeϑ (B.31)

er = sinϑ (cosϕ ex + sinϕ ey) + cosϑez (B.32)

eϕ = − sinϕ ex + cosϕ ey (B.33)

eϑ = cosϑ (cosϕ ex + sinϕ ey)− sinϑez (B.34)

ez = ez (B.35)

∇ = er
∂

∂r
+
eϑ
r

∂

∂ϑ
+

eϕ
r sinϑ

∂

∂ϕ
. (B.36)

Therefore, we obtain for the gradient, divergence and curl operations in spherical coordinates
the following formulas

∇φ =


∂φ
∂r

1
r
∂φ
∂ϑ

1
r sinϑ

∂φ
∂ϕ

 (B.37)

∇ · u =
1

r2

∂(r2ur)

∂r
+

1

r sinϑ

∂ sinϑuϑ
∂ϑ

+
1

r sinϑ

∂uϕ
∂ϕ

(B.38)

∇× u =
1

r2 sinϑ


er reϑ r sinϑ eϕ
∂
∂r

∂
∂ϑ

∂
∂ϕ

ur ruϑ r sinϑuϕ

 =


1

r2 sinϑ

(
∂(r sinϑuϕ)

∂ϑ − ∂(ruϑ)
∂ϕ

)
r
(
∂ur
∂ϕ −

∂(r sinϑuϕ)
∂r

)
r sinϑ

(
∂(ruϑ)
∂r − ∂ur

∂ϑ

)
 .(B.39)

Furthermore, the Laplacian of a scalar function φ computes by

∇ · ∇φ = 4φ =
1

r2

∂

∂r

(
r2∂φ

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂φ

∂ϑ

)
+

1

r2 sin2 ϑ

∂2φ

∂ϕ2
. (B.40)

Performing an integration in the spherical coordinate system, the volume element transforms
(see Fig. B.2b)

dΩ = (r dϑ) ( dr) (r sinϑ dϕ) = r2 sinϑ dr dϕdϑ , (B.41)

and therefore the integral∫
Ω

f(x, y, z) dx dy dz =

∫
r

∫
ϕ

∫
ϑ

f(r, ϕ, ϑ) r2 sinϑ dϑ dϕdr . (B.42)

Important is also the Helmholtz decomposition, which states that each vector field v (e.g.,
the flow velocity) can be decomposed in an irrotational field described by the gradient of a
scalar potential φ and in a solenoidal field u described by a vector potential A

v = ∇×A+∇φ . (B.43)

Furthermore, the integral theorem of Gauss (also known as the divergence theorem) trans-
forms a volume integral to a surface integral∫

Ω

∇ · u dx =

∮
Γ(Ω)

u · ds =

∮
Γ(Ω)

u · n ds . (B.44)
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The theorem of Stokes transforms a surface integral to a line integral∫
Γ

∇× u · ds =

∮
C(Γ)

u · dl . (B.45)

Finally, we want to define the integration by parts and its extension to Green’s integral
formula. Let Ω ⊂ Rn, n = 2, 3 be a domain with smooth boundary Γ. Then, for any
u, v ∈ H1(Ω) the following relation holds (definition of functional spaces, e.g., H1 see [?])∫

Ω

∂u

∂xi
v dΩ =

∫
Γ
uvn · ei ds−

∫
Ω

u
∂v

∂xi
dΩ . (B.46)

In (B.46) n denotes the outer normal of the considered domain Ω with boundary Γ. By a
multiple application of (B.46), we arrive at Green’s formula∫

Ω

4u v dΩ =

∫
Γ

∂u

∂n
v ds−

∫
Ω

∇u · ∇v dΩ (B.47)

for all u ∈ H2(Ω) and v ∈ H1(Ω).
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C. Tensors and Index Notation

Tensors are simply speaking a linear mapping. E.g., a second order tensor [A] is a linear
mapping that associates a given vector u with a second vector v by

v = [S]u .

The term linear in the above relation implies that given two arbitrary vectors u and v and
two arbitrary scalars α, β, then the following relation holds

[S] (αu+ βv) = α[S]u+ β[S]v .

The extension to tensors of higher rank is straight forward. E.g., Hook’s law maps the
mechanical strain tensor [S] by the 4th order elasticity tensor [c] to the mechanical stress
tensor [σ]

[σ] = [c] [S] .

Now, index notation is a powerful tool to write complex operations of vectors and tensors in
a more readable way. However, there are times when the more conventional vector notation
is more useful. It is therefore important to be able to easily convert back and forth between
the two notations. Table C.1 describes our notation1. An index can be a free or a dummy

Table C.1.: Vector and index notation.

Vector Index Rank

Scalar ξ ξ 0

Vector u ui 1

Tensor (2nd order) [A] Aij 2

Tensor (3nd order) [B] Bijk 3

Tensor (4nd order) [C] Cijkl 4

index. For free indices, the following rules are defined:

� The number of free indices equals the rank as displayed in Tab. C.1. Thereby, a scalar
is a tensor with rank 0, and a vector is a tensor of rank 1. Tensors may assume a rank
of any integer greater than or equal to zero. Please note that it is just allowed to sum
together tensors with equal rank.

1Our notation does not differ between tensors of different orders.
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� A free index appears once and only once within each additive term and remains within
the expression after the operation has been performed, e.g.

ai = εijkbjck +Aijdj . (C.1)

� The same letter must be used for the free index in every additive term.

� The first free index in a term corresponds to the row, and the second corresponds to
the column. Thus, a vector (which has only one free index) is written as a column of
three rows

u = ui =


u1

u2

u3


and a second order tensor as

[A] = Aij =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 .

A dummy index defines an index, which does not appear in the final expression any more.
The rules are as follows:

� A dummy index appears twice within an additive term of an expression. For the exam-
ple above (see (C.1)), the dummy indices are j and k.

� A dummy index implies a summation over the range of the index, e.g.

aii = a11 + a22 + a33 .

For many operations we use the Kronecker delta (2nd order tensor)

δij =


1 0 0

0 1 0

0 0 1

 (C.2)

and the alternating unit tensor (3rd order tensor)

εijk =


1 if ijk = 123, 231 or 312

0 if any two indices are the same

−1 if ijk = 132, 213 or 321

. (C.3)

Thereby, the following relation can be explored

εijk =
1

2
(i− j) (j − k) (k − i) .

With these definitions, we may write vector and tensor operations using index notation. Here,
we list the most useful ones:
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� Scalar product of two vectors

a · b = c → aibi = c . (C.4)

� Vector product of two vectors

a× b = c → εijkajbk = ci . (C.5)

� Gradient of a scalar

∇φ = u → ∂φ

∂xi
= ui . (C.6)

� Gradient of a vector

∇a =


∂a1
∂x1

∂a2
∂x1

∂a3
∂x1

∂a1
∂x2

∂a2
∂x2

∂a3
∂x2

∂a1
∂x3

∂a2
∂x3

∂a3
∂x3

 → ∂ai
∂xj

. (C.7)

� Gradient of a second order tensor

∇ [A] =
∂[A]

∂x
=

3∑
i,j,k=1

∂Aij
∂xk

ei ⊗ ej ⊗ ek . (C.8)

� Divergence of a vector

∇ · a = b → ∂ai
∂xi

= b . (C.9)

� Divergence of a second order tensor

∇ · [A] =

3∑
i,j=1

∂Aij
∂xj

ei . (C.10)

� Curl of a vector

∇× a = b → εijk
∂ak
∂xj

= bi . (C.11)

� Double product or double contraction of two second order tensors

[A] : [B] = c → AijBij = c (C.12)

or of a fourth order tensor with a second order tensors, e.g. Hooks law

[σ] = [c] : [S] . (C.13)

� Dyadic or tensor product
a⊗ b = [C] → aibj = Cij (C.14)

[A]⊗ b = [C] → Aijbk = Cijk (C.15)

[A]⊗ [B] = [D] → AijBkl = Dijkl . (C.16)
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� Product of two tensors

[A][B] = [C] → AijBjk = Cik . (C.17)

Note that only the inner index is to be summed.

� Trace of a tensor
tr ([A]) = b → Aii = b . (C.18)
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D. Generalized Functions

In reality, dissipative effects cause discontinuities to be smooth and real signals to decay for
t → ∞. However, in idealized models, we often cannot describe the properties by ordinary
functions. Two simple examples: (1) a point source is zero everywhere except in one point,
where it is infinitely large; (2) the function sinωt is not a decaying function, which in the
classical sense cannot be Fourier-transformed.

So, in general we can state that our mathematical apparatus for functions is too restricted
and so it makes sense to extend it to so called generalized functions.

D.1. Basics

Definition (Lebesgue). A function f(x) is locally integrable in Rn if∫
Ω

|f(x)|dx ,

exists for every bounded volume Ω in Rn. A function f(x) is locally integrable on a hyper-
surface in Rn if ∫

Γ

|f(x)|ds ,

exists for every bounded region Γ in Rn.

Definition. The support denoted by supp of a function f(x) is the closure of the set of all
points x such that f(x) 6= 0. If supp f is a bounded set, then f is said to have compact
support (see Fig. D.1a).

-l

1+x 1-x

x

f(x)

l0

l

(a) Function with compact support.

0-l l
x

f(x)

(b) Infinitely differentiable functions
with compact support.

Figure D.1.: Special properties of functions.

We know that the delta function δ(x) becomes meaningful, if it is first multiplied by a
sufficient smooth auxiliary function and then integrated over the entire space, e.g. in the
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one-dimensional space
∞∫
−∞

δ(x)φ(x) dx = φ(0) .

Therefore, we will follow the Schwartz-Sobolev approach, which includes the following
steps: (1) operators on ordinary functions such as differentiation and Fourier transform are
extended by first writing these operators as functionals for ordinary functions; (2) extend
it for all generalized functions, e.g., also for the delta function, etc. In doing so, we first
define the space D of all test functions φ(x), which are infinitely differentiable functions with
bounded support. The prototype of such a test function belonging to D is

φ(x) =

{
e
− a2

a2−r2 r < a
0 r > a

as displayed in Fig. D.1b (for details see [?]). A linear functional of f on the space D is
an operation by which we assign to every test function φ(x) a real (complex) number - a
functional - denoted by

< f, φ > =

∞∫
−∞

f φ dx

such that
< f, c1φ1 + c2φ2 > = c1 < f, φ1 > +c2 < f, φ2 >

for arbitrary test functions φ1, φ2 and real numbers c1. c2.

Definition. A linear functional on D is continuous, if and only if (iff) the sequence of numbers
< f, φm > converges to < f, φ >, when the sequence of test functions {φm} converges to the
test function φ. Thus

lim
m→∞

< f, φm >=< f, lim
m→∞

φm > .

Definition. A continuous linear functional on the space D of test functions is called a distri-
bution.

So, every locally integrable function f(x) generates a distribution through the formula

< f, φ >=

∫
Rn

f(x)φ(x) dx ,

and is denoted a regular distribution. All other distributions are called singular, e.g. a
distribution with the singular function δ. The space of all distributions on D is denoted
by D′, which is larger as D and which is also a linear space (see Fig. D.2). It forms a
generalization of the class of locally integrable functions because it contains functions such as
δ(x) that are not locally integrable. For this reason distributions are also called generalized
functions. We shall use the term distribution and generalized functions interchangeably.

Example: The Heaviside distribution in Rn is

< HΩ, φ >=

∫
Ω

φ(x) dx where HΩ(x) =

{
1, x ∈ Ω
0 x /∈ Ω
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Space of generalized functions D‘

Ordinary
functions

f(x)

(x)

(0)  f(x), (x) 

Singular generalized
functions

Real or
complex numbers

Figure D.2.: Generalized functions are continuous linear functionals on space D of test func-
tions.

0
x

H(x)

(a) Heaviside functions.

0
x x

III(x)
f(x)

(b) Sampling function with compact support.

Figure D.3.: Special functions.

For R1 it becomes (see function in Fig. D.3a)

< H,φ >=

∞∫
0

φ(x) dx .

Since H(x) is a piecewise continuous function, this is a regular distribution.

Example: An infinite sequence of delta functions is described by

III(x) =
∞∑

n=−∞
δ(x− n) .

This is called the sampling or replicating function (see Fig. D.3b) because it gives information
about the function f(x) at x = n

< III(x), f(x) >=
∞∑

n=−∞
f(x)δ(x− n) .

Since the delta function is not locally integrable, this distribution is a singular distribution.
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D.2. Special properties

In the following, we will derive important properties of generalized functions.

D.2.1. Shift operator

Let f(x) be an ordinary function, which we shift by a value of h. Then, the linear functional
on the space of test functions computes as

< f(x+ h), φ(x) >=

∞∫
−∞

f(x+ h)φ(x) dx =

∞∫
−∞

f(x)φ(x− h) dx .

This rule can now be used for all generalized functions in D′, e.g. for the delta function δ(x)

< δ(x+ h), φ(x) >=

∞∫
−∞

δ(x+ h)φ(x) dx =

∞∫
−∞

δ(x)φ(x− h) dx = φ(−h) .

D.2.2. Linear change of variables

Let < f, φ > be a regular distribution generated by the function f(x) that is locally integrable
in Rn. Now, let x = Ay − a, where A is a n × n matrix with det(A) 6= 0 and a a constant
vector, be a non-singular linear transformation of the space Rn onto itself. Then we have

< f(Ay − a), φ(y) > =

∫
Rn

f(Ay − a)φ(y) dy

=
1

|det(A)|

∫
Rn

f(x)φ
(
A−1(x+ a)

)
dx

=
1

|det(A)|
< f(x), φ

(
A−1(x+ a)

)
> , (D.1)

where A−1 is the inverse of the matrix A. In special, we have for the delta function

< δ(ax), φ(x) >=
1

|a|
< δ(x), φ(x) > . (D.2)

So we can simply write δ(ax) = (1/|a|)δ(x).

D.2.3. Derivatives of generalized functions

Let f(x) be an ordinary function out of D, e.g. f ∈ C1. Then we can write

< f ′(x), φ(x) >=

∞∫
−∞

f ′(x)φ(x) dx .

Performing an integration by parts results in

< f ′(x), φ(x) >= f(x)φ(x)|∞−∞︸ ︷︷ ︸
= 0 due to local support of φ(x)

−
∞∫
−∞

f(x)φ′(x) dx . (D.3)
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This result can be extended to define the derivatives of all generalized functions in D′

< fn(x), φ(x) >= (−1)n < f(x), φn(x) > , (D.4)

which states that generalized functions have derivatives of all orders.

Example: The derivative of the delta function δ′(x) has the property

< δ′(x), φ(x) >= −
∞∫
−∞

δ(x)φ′(x) dx = −φ′(0) . (D.5)

Example: The derivative of the Heaviside function computes as

< H ′(x), φ(x) > =

∞∫
−∞

H ′(x)φ(x) dx

= − < H(x), φ′(x) >

=

∞∫
0

φ′(x) dx = − φ(x)|∞0

= φ(0) =< δ(x), φ(x) > . (D.6)

D.2.4. Multidimensional delta function

In multidimensional, δ(x) has a simple interpretation by

< δ(x), φ(x) >=

∞∫
−∞

δ(x)φ(x) dx = φ(0) .

Thus,
δ(x) = δ(x1) δ(x2) δ(x3)...δ(xn) ,

where x = (x1, x2, .., xn). Of great interest are applications of δ(f) and δ′(f), where f = 0 is
a surface in the three-dimensional space as displayed in Fig. D.4. Then, for a test function
φ(x) defined in Ω and on Γ we have the following properties

∞∫
−∞

φ(x)∇H(f) dx =

∮
Γ

φ(x)nds =

∮
Γ

φ(x) ds (D.7)

∞∫
−∞

φ(x)
∂H(f)

∂xj
dx =

∮
Γ

φ(x)nj ds =

∮
Γ

φ(x) dsj . (D.8)

In the following, we want to proof these properties. First of all, we may write by the chain
rule of differentiation

∂H(f)

∂xj
=
∂H(f)

∂f︸ ︷︷ ︸
= δ(f)

∂f

∂xj
⇒ ∇H(f) = δ(f)∇f .
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Figure D.4.: Surface defined by f = 0.

Thereby, the gradient of f points in the direction of n. In a next step, we will decompose the
volume element into a surface element ds and a line element dl⊥ in the direction of n, and
write

dx = dl⊥ ds .

Since, f is zero on the surface Γ, a Taylor expansion up to first order results in

f =

(
∂f

∂l⊥

)
Γ

l⊥ = |∇f | l⊥ .

Using this relation and the property (D.2), we may write

δ(f) = δ(|∇f |l⊥) =
δ(l⊥)

|∇f |
.

Hence, we obtain

∞∫
−∞

φ(x)∇H(f) dx =

∞∫
−∞

φ(x)∇f δ(f) dx

=

∞∫
−∞

φ(x)
∇f
|∇f |︸ ︷︷ ︸
n

δ(l⊥) dl⊥ ds

=

∮
Γ

φ(x)nds , (D.9)

since n = ∇f/|∇f |.
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