
Basic equations of flow systems, canonical form, characteristics,  

1D unsteady subsonic flow, 

2D supersonic steady flow 
 

1. Basic flow equations of fluid flow 

 

Notations:  

w  velocity vector 

p  pressure 

ρ  density 

T  absolute temperature 

u  specific internal energy 

e specific total energy 
2

2w
ue   

h  specific enthalpy 

m mass 

I momentum 

F force 

E energy 

V  Volume 

A  surface, area 

n  normal vector of surface 

P power 

Q  heat power 
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By neglecting surface friction surface forces result from pressure distribution on channel walls. 
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pressure nF   . 

Its power is    dApP

A

pressure nw   . 

Let’s write these equations for a channel with cross section A = A(x) varying along the x axis. The 

area A doesn’t change in time. Velocity w – average velocity–  is parallel to the normal vector n 

of channel cross section A , thus w·n = w.  

Body forces will be neglected; surface forces will be identified with pressure force. The above 

equations are integrated on an elementary volume dV = Adx. We get three conservation equations 

in the above order.  
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Some numerical codes use this style as fluxes Φ are defined on the boundaries of elementary cells, 

e.g. hexahedra’s while elements of U are defined in the centres of cells when integrating the 

conservation equations on a cell having a finite volume. 

Through a lengthy computation one dimensional equations can be transformed into non-

conservation form if e.g. conservation of mass is substituted into conservation of momentum after 

differentiating product-terms. We get finally 
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Speed of sound has been denoted by c in the last equation defined by 
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We can summarize the three basic lows again this time in vector-matrix form: 
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The second term is the product of a matrix and a vector. Eigenvalues of matrix 
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M  play an important role with respect to existence of solutions of the equation 

system. The eigenvectors ei  are solutions of the homogenous algebraic equation   0 ii eEM   

where E is the unite matrix. In order that a solution exists   0det  EM   must be valid. In details 
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It can be seen that the three eigenvalues are 

 

w1 , 

cw2 , 

cw3 . 

 

The importance of these eigenvalues are obvious if we want to describe the unsteady isentropic 

flow of an ideal gas through a pipe of constant cross section. In this case equations (*) and (**) 

are  
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we have introduced the square of sound velocity c in equation (*) giving the second form of (1).  

 

Differentiating (1) with respect to t and (2) with respect to x then substituting 
2
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derivative of equation (1) we get a second order partial differential equation (PDE) for the 

unknown p. In this new equation only first order partial derivatives of the dependent variables 

stand beside the second partial derivatives of p: 
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The above equation can be written in general form 
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2. The type of the 2nd order PDE, canonical form 

 

Equations (3*) is called a second order PDE for the unknown p(x,t) quasilinear in its main part.  

The terms containing second order derivatives are called the main part.  

Coefficients a, b, c of the second order partial derivatives can be arranged into a symmetric matrix. 

This matrix has the form 

in the general case (3*) 
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The type of the PDE is determined by the sign of the determinant        txbtxctxa ,,,det 2A

of matrix A. 

 If  det(A) > 0, definite,   the type of the PDE is   elliptic,  

 if  det(A) = 0, semidefinite,  the type of the PDE is  parabolic,  

 if  det(A) < 0, indefinite,  the type of the PDE is  hyperbolic.  

 



Let’s transform the independent variables x, t through the functions ξ = ξ(x, t),  = (x, t) leading 

to a simpler form of the equation. We suppose that ξ and  are continuously differentiable 

functions thus the Jacobian must be nonzero, 
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Putting these derivatives into the left hand side of Eq. (3*) the second order terms will be  
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The coefficients of the first and third term have the same structure with the only difference that 

the coefficient in the first term contains derivatives of the new variable  while the third term 

derivatives of . When equating the coefficients of the first and third term in Eq. (4) with zero 

only the middle term remains. 
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The difference equation of a (x,t) = constant level as the change (total derivative) of  along such 

a line is zero: 
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By comparing the last two equations one can see that the slope of a (x,t) = constant line is 
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This equation has  

 two real solutions if det(A) < 0 thus for hyperbolic equations,  

 one real solution if det(A) = 0 thus for parabolic equations and  

 no real solutions if det(A) > 0 thus for elliptic equations. 

 

These characteristics had been found by transforming the 2nd order PDE into its “canonical form”. 

The transformation was executed on the independent variables. 

 

In the special case (3) the value of the determinant     222 1det cwwcw A  is negative 

our equation (3) is of hyperbolic type.  

As we see; wave equation is typically hyperbolic.  

The equation of heat conduction or of 2D diffusion (
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2D vortex free flow of an incompressible fluid ( 0
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Equations (5*) related to the special case are 
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From the first equation  
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The slopes of the two series of characteristic lines:      = constant.,    and      η = constant     on the 

t – x plane is identical with the eigenvalues of matrix M , but NOT of A!!! 

 

After having found the transformation simplifying the main part of the 2nd order PDE we can 

calculate this transformed main part. 
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and in the special case (4) this coefficient is -4c2 thus the simple main part is 
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this is the canonical form of the PDE, its type is hyperbolic. 
 Through a second transformation   ,    we get the other canonical form of hyperbolic 2nd 

order PDE’s:  .....
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Method of characteristics (MOC); the form of ODE’s to be solved along the characteristics 

 

Let’s add Eq.(1) to the ρc-times of Eq. (2) then push the term ρc into the derivatives of w! We 
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Thus we have received two ODE’s which can be integrated very easily and the unknowns p and w 

can be computed in small time steps. 

 

Initial and boundary conditions 

The importance of the type of 2nd order PDE-s lies in the fact that it determines the type of initial 

and boundary conditions assuring unique solutions.  

If; for example; we prescribe for the starting time t = 0 along a section of the x-axis the initial 
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3. Steady flow problem leading to a hyperbolic equation 

 

The 2D steady isentropic flow of a compressible gas is described by the following equations (u, v 

denote the components of velocity vector w): 
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Adding the u-times of Eq. (8) to the v-times of Eq. (9) and substituting Eq. (7) into the RHS of this 

equation one receives 
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Isentropic flow is also a vortex free flow this is a corollary of the Crocco equation (*) . 
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(*) For the reversible, adiabatic case the first law of thermodynamics says 0


dp
dhTdsdq . Thus 

ph grad
1

grad


 . According to this and to Euler’s equation hp gradgrad
1

rot
2

grad
2

















ww

w . 

This gives 
öhh grad

2
gradrot

2

















w
ww . However  this is zero, thus either 0rot w  or wrot is parallel 

with the velocity vector w (Beltrami flow). 

 

Now we shall define the coordinate x, the main flow direction as “time-like”. Then Eqs. (10) and 

(11) can be rewritten in a matrix vector formulation. Partial derivatives will be written in the short 

“subscript-form”. 
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With concise notation: 0wAwA  yx 21 .  

We need the earlier (***) form thus we look for 0wAAw  
yx 2

1
1 . We must find the 

eigenvalues of the matrix 2
1

1 AAM  
. Those eigenvalues will determine the slopes of 

characteristics running through the x-y plane. The inverse of matrix A1 denoted by A1
-1 is the 

transposed matrix constructed from the under determinants belonging the elements of A1 divided 

by the determinant of A1. For a 2x2 matrix it is very easy to find.  22
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The eigenvalues of matrix M are solutions of   0det  EM  . One can control that these are 
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
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where M is the local Mach-number. 

 

After a lengthy calculation we get an alternate form of the eigenvalues: 
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With further notations  tan
u

v
  and  


tan

1
             (14) 
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Thus    tan1  and similarly    tan2 . The slopes of characteristics is equal to the 

eigenvalues (see the earlier marked sentence). Now one can draw the velocity vector w and the 

two characteristics ξ = constant and η = constant in the x-y plane. 

 

 
Fig. 1 Characteristics ξ, η, velocity vector w, angles β and ϑ  

 

The information con of point P is bordered by the characteristic line  ξ = constant and  η = constant 

starting from point P. Happenings only in this region are influenced by point P. These characteristic 

lines are also called as Mach-lines. 

 

Equations to be solved along the characteristics 

 

From tan
u

v
 follows  sin  ;cos wvwu  . Naturally, the partial derivatives can be 

expressed with w and ϑ, e.g.  
x

w
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 sincos . Other first order derivatives have 

similar forms. After substituting these into Eq. (10) and rearranging we have 
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From the definition of α, β and from the LHS formula (14) 
w
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w
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After a similar process the cosβ-times of Eq. (11) is: 
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Finally adding these equations (and subtracting in a second step) 

y 
ξ=const. 

x 

w 

η = const. 

β 
ϑ β P 
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Along the characteristics η = constant  
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If we substitute equality 1cot 2  M  into (15) we receive 
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By the help of Fig. 2 we show how to compute intersection P of characteristics starting from points 

L and R: 
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above equations. 

 

The system of equations to be solved numerically is: 
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lines. 

 

 
 

Fig. 2 Flow computation in point P from known values in points L and R  
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