
Fluid Flow Stability

Csaba Hős, cshos@hds.bme.hu
Budapest University of Technology and Economics

Dept. of Hydrodynamic Systems

10th October 2017

Contents

1 Numerics 1
1.1 Introduction . 1
1.2 Differentiation matrices . 2

1.2.1 First derivatives . 2
1.2.2 Higher-order derivatives . 6
1.2.3 Boundary conditions . 6

1.3 Techniques automatically satisfying BCs . 6
1.3.1 Galerkin technique . 7
1.3.2 Collocation . 7

2 Stability of planar incompressible flows 9
2.1 Governing equations for Newtonian fluids . 9
2.2 Governing equations for general fluids . 9
2.3 Homework description . 10

1 Numerics

1.1 Introduction

The aim of this document is to provide a brief introduction on the numerical techniques used to
turn partial differential equations (PDEs) into (a large system of, possibly nonlinear) ordinary
differential equations (ODEs), in the form of ẋ = F(x, t). There are two motivations behind
this desire:

• the resulting ODEs can be integrated by means of standard techniques, such as e.g. Runge-
Kutta schemes, or,

• we wish to analyse the stability of the ODEs and hope to generalize the results to the
original PDE.

As an example, let us have a look at the following standard problem:

µ
∂2w

∂2t
= E I

∂4w

∂4x
+ q(x, t), (1)

1

which is the problem of the vibrating elastic beam with µ mass per unit length, w(x, t) is the
deformed shape, I =

∫ ∫
z2dy is the moment of inertia, E is the elasticity modulus and q(x, t)

is the load, that varies both along the beam (x) and in time (t).
The boundary conditions, in the case of fixed ends, take the form of

w(x, t)|x=0,L = 0 and
d

dx
w(x, t)

∣∣∣∣
x=0,L

= 0. (2)

Let ŵ denote the exact solution. Then, the R(w) error function (residual function) is

R(w) := µ
∂2w

∂2t
− E I ∂

4w

∂4x
− q(x, t) és R(ŵ) = 0. (3)

1.2 Differentiation matrices

1.2.1 First derivatives

Let us approximate the first derivative of y(x) by centered difference scheme, that is

y′(x)
∣∣
x=xi

≈ yi+1 − yi−1

2∆
, (4)

where yi := y(xi) and ∆ is the grid size. This is equivalent of placing the origin at xi, fitting a
parabola through these points and evaluating the derivative at the origin:

ỹ(x) = a+ bx+ cx2 where ỹ(−∆) = yi−1, ỹ(0) = yi and ỹ(∆) = yi+1, (5)

whose solution is

a = yi, b =
yi+1 − yi−1

2∆
and c =

yi+1 − 2yi + yi−1

2∆2
. (6)

Clearly, y′(0) = b, which is exactly (4).
At the boundaries, we’ll face the problem that the nodes x0 and xN+1 are missing. We coudl

use first-order approximation

y′(x1) ≈ y2 − y1

∆
and y′(xN) ≈ yN−1 − yN

∆
. (7)

Or, ee shall use the previous technique, but now the parabola fitting problem is

ỹ(x) = a+ bx+ cx2 where ỹ(0) = y1, ỹ(∆) = y2 és ỹ(2∆) = y2, (8)

and the coefficients are

a = y1, b =
−3y1 + 4y2 − y3

2∆
és c =

y1 − 2y2 + y3

2∆2
, (9)

from which
y′(0) ≈ b =

−3y1 + 4y2 − y3

2∆
. (10)

In a similar manner, the derivative at the right end is

y′(xN) ≈ b =
3yN − 4yN−1 + yN−2

2∆
. (11)

2

Putting all these together, one might define a differentiation matrix, with which the deriv-
ative is approximated as y′ = DCDSy and

DCDS =
1

2∆

−3 4 −1 . . .
0 −1 0 1 . . .
. . . 0 −1 0 1

.
0 −1 0 1 0
. . . 0 1 −4 3

. (12)

Another popular approach is to use the Chebyshev polynomials for interpolation. These
polynomials are the solutions of the Chebyshev equation(

1− x2
)
y′′ − xy′ + n2y = 0 (13)

and are given by
Tk(x) = cos (k arccosx) − 1 ≤ x ≤ 1. (14)

The first few of them are:

T0(x) = cos (0) = 1 (15)
T1(x) = cos (arccosx) = x (16)

T2(x) = cos (2 arccosx) = 2x2 − 1 and (17)

T3(x) = cos (3 arccosx) = 4x3 − 3x. (18)

(We have exploited that cos 2θ = 2 cos2 θ − 1 és cos 3θ = 4 cos3 θ − 3 cos θ.) There is also a
recurrence formula Tk+1(x) = 2xTk(x)− Tk−1(x). Hence, we approximate y(x) by

y(x) ≈
N∑
i=0

akTk(x), −1 ≤ x ≤ 1. (19)

Obviously, the weights ak must satisfy y(xi) = yi. The optimal way of using these polynomials
is on a special grid, whose nodes are the so-called Lobatto points:

xj = cos
πj

N
, j = 0, . . . , N, (20)

that is, we build an equidistant grid on the upper arc of the unit circle and project the points
onto the x axis. Notice that this grid is denser around the x = ±1 end points. Finally, the
differentiation matrix is:

DCheb,i,j =

ci
cj

(−1)i+j

xi−xj i 6= j

− xi
2(1−x2i)

1 ≤ i = j ≤ N − 1

2N2+1
6 i = j = 0 és

−2N2+1
6 i = j = N

ahol ck =

{
2 k = 0, N
1 1 ≤ k ≤ N − 1.

(21)

Figure 1 (see the computer code on the next page) demonstrates the use of differentiation
matrices. Notice the diabolish accuracy of the Chebyshev differentiation matrix. Notice that

• 10−13 is approx. the machine precision, meaning that due to the finite number represent-
ation, one cannot gain more accuracy with any other technique and that

3

0 5 10 15 20

10 -15

10 -10

10 -5

100
sin(x)

CDS
Cheb

0 5 10 15 20

10 -15

10 -10

10 -5

100
x2

CDS
Cheb

0 5 10 15 20

10 -15

10 -10

10 -5

100
tanh(x)

CDS
Cheb

0 5 10 15 20

10 -15

10 -10

10 -5

100
sin(x)*exp(x)

CDS
Cheb

Figure 1: Error of the derivative of several functions by means of centred differentiation (CDS)
and Chebyshev polinomials (Cheb) as a function of grid points.

4

• for the x2 function, both techniques give the highest possible accuracy.

Demo on differentiation matrices
function diffmx_example
clear all, close all

f=figure(1)
tit={’sin(x)’,’x^2’,’tanh(x)’,’sin(x)*exp(x)’};
for j=1:4
err1=[]; err2=[]; xx=[];
for Npt=4:2:20

xx=[xx,Npt];
[x1,D1]=cdsdif(Npt,1);
[y1,dy1]=funs(x1,j);
err1=[err1, norm(dy1-D1*y1)];

[x2,D2]=chebdif(Npt,1);
[y2,dy2]=funs(x2,j);
err2=[err2, norm(dy2-D2*y2)];

fprintf(’\n Npt=%3d, err_CDS=%5.3e, err_Cheb=%5.3e’,...
Npt,err1(end),err2(end));

end

subplot(2,2,j)
semilogy(xx,err1,’b*-’,xx,err2,’ro-’), grid on
ylim([1e-16,1]),
title(tit{j}), legend(’CDS’,’Cheb’,’Location’,’West’)

print(f,’-dpdf’,’diffmx_example.pdf’)
end

function [y,dy]=funs(x,i)
if i==1, y=sin(x); dy=cos(x); end
if i==2, y=x.^2; dy=2*x; end
if i==3, y=tanh(x); dy=1-(tanh(x)).^2; end
if i==4, y=sin(x).*exp(x); dy=cos(x).*exp(x)+sin(x).*exp(x); end
end

Centered diff. matrix

function [x, DM] = cdsdif(N, M)

x=linspace(-1,1,N)’;
dx=x(2)-x(1);
DM=zeros(N,N);
D(1,1)=-3; D(1,2)=4; D(1,3)=-1;
D(N,N)=3; D(N,N-1)=-4; D(N,N-2)=1;
for i=2:N-1

5

D(i,i-1)=-1;
D(i,i+1)=1;

end
D=D/2/dx;
DM=D^M;
end

1.2.2 Higher-order derivatives

The beauty of this approach is that, upon using differentiation matrices, it is easy to see that
e.g.

y′′ ≈ D2y. (22)

1.2.3 Boundary conditions

When dealing with PDEs, great care must be devoted to boundary conditions. For example,
our motivating example used the boundary conditions

w(x, t)|x=0,L = 0 and
d

dx
w(x, t)

∣∣∣∣
x=0,L

= 0. (23)

This means that if we use centred difference scheme, we have

• y(0) = y1 = 0 and y(L) = yN = 0 and

• as y′(0) = 0, we have – by virtue of (9) – 0 = y′(0) = b = −3y1+4y2−y3
2∆ , which gives

4y2 = y3 (as y1 = 0) and

• as y′(L) = 0, we have – by virtue of (11) – 0 = y′(L) = b =
3yN−4yN−1+yN−2

2∆ , which gives
4yN−1 = yN−2 (as yN = 0).

It is clear if that if one uses e.g. Chebyshev differentiation matrices, the implementation of the
boundary conditions is even more complicated.

1.3 Techniques automatically satisfying BCs

We shall approximate the unknown w(x, t) function as

w(x, t) ≈
N∑
i=0

ai(t)fi(x), (24)

where ai(t) are unknown time-dependent amplitudes of the shape functions fi(x). We wish to
choose the shape functions in such a way that they automatically satisfy the boundary conditions,
i.e.

w(x, t)|x=0,L = 0 → fi(0) = 0 and fi(L) = 0 for all i, (25)

and we also have

d

dx
w(x, t)

∣∣∣∣
x=0,L

= 0 → f ′i(0) = 0 and f ′i(L) = 0 for all i. (26)

For example, we might choose fi(x) = cos
(
i xL2π

)
− 1, which satisfies both of the above

conditions.

6

1.3.1 Galerkin technique

We now apply the Galerkin technique, which requires that the residual vector R(w) is perpen-
dicular to all of the basis vectors, i.e.

0 = 〈R(w), fj(x)〉 for all j = 1 . . . N. (27)

This means that

0 = 〈R(w), fj(x)〉 = (28)

=

〈
µ
∂2w

∂2t
− E I ∂

4w

∂4x
− q(x), fj(x)

〉
= (29)

=

〈
µ
∂2
∑N

i=0 ai(t)fi(x)

∂2t
− E I

∂4
∑N

i=0 ai(t)fi(x)

∂4x
− q(x), fj(x)

〉
= (30)

=

〈
µ

N∑
i=0

äi(t)fi(x)− E I
N∑
i=0

ai(t)f
(iv)
i (x)− q(x), fj(x)

〉
= (31)

= µ

N∑
i=0

äi(t) 〈fi(x), fj(x)〉 − E I
N∑
i=0

ai(t)
〈
f

(iv)
i (x), fj(x)

〉
− 〈q(x), fj(x)〉 . (32)

Note that we have j = 1 . . . N of the above equations, which can be conveniently written as

µAG ä = EI BG a+ CG. (33)

With our previous choice fi(x) = cos
(
i xL2π

)
− 1 the coefficients are

AGji =

∫ L

0
fi(x)fj(x)dx =

{
L if i 6= j

3L/2 if i = j
(34)

BGji =

∫ L

0
f

(iv)
i (x)fj(x)dx =

{
0 if i 6= j

8i4π4/L3 if i = j
and (35)

CGj =

∫ L

0
q(x)fj(x)dx. (36)

(The superscript ’G’ stands for Galerkin.) The above ordinary differential equation can be easily
solved for ai(t) and the actual shape of the beam can then be reconstructed.

1.3.2 Collocation

When applying the collocation technique, instead of forcing the approximation to be optimal
over an interval (in our case, [0,L]), we force it to be accurate at pre-prescribed collocation points
xj , giving

0 = R(w(t, xj)) for all j = 1 . . . N. (37)

This means that we have

0 = µ
N∑
i=0

äi(t)fi(xj)− E I
N∑
i=0

ai(t)f
(iv)
i (xj)− q(xj). (38)

7

This can be formally written the same way as (33) but now the coefficient matrices are
different:

ACji = fi(xj), BCji = f
(iv)
i (xj) and CCj = q(xj). (39)

There are many ways of choosing the collocation points, the simplest way is to have them
uniformly spaced. Once the mesh is set up and the above matrices are computed, one can solve
(33) and reconstruct the surface.

One solves the resulting system of ODEs by means of numerical integration, which requires
rewriting

µAä = EIBa+ C

as a first-order system of ODEs. Let us introduce y1 = a and y2 = ȧ (note that both y1 and
y2 are N × 1 matrices). Then, we have(

ẏ1

ẏ2

)
=

(
0 IN

EI
µ A

−1B 0

)(
y1

y2

)
+

(
0

1
µA
−1C

)
, (40)

which can be integrated by standard ODE solvers.

8

2 Stability of planar incompressible flows

2.1 Governing equations for Newtonian fluids

In the case 2D planar flow of a Newtonian, incompressible liquid, the continuity and momentum
equation reads

∂vx
∂x

+
∂vy
∂y

= 0 (41)

∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

= −1

ρ

∂p

∂x
+ ν

(
∂2vx
∂x2

+
∂2vx
∂y2

)
(42)

∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

= −1

ρ

∂p

∂y
+ ν

(
∂2vy
∂x2

+
∂2vy
∂y2

)
(43)

After introducing the stream function Ψ, for which Ψx = −vy and Ψy = vx, the continuity
equation is automatically satisfied. Then we compute ∂yMomx − ∂xMomy, which gives

∂φ

∂t
+
∂Ψ

∂y

∂φ

∂x
− ∂Ψ

∂x

∂φ

∂y
= ν∆φ, (44)

where φ = ∆Ψ = Ψxx + Ψyy.

2.2 Governing equations for general fluids

The general form of the equation of motion is

ρ
Dvi
Dt

=
∂τij
∂xj

+ ρGi, (45)

where we used Einstein’s notation, i.e. ∂zij
∂xj

=
∑

j
∂zij
∂xj

(reoccuring indices mean summitation).
In the case 2D planar flow of a general, incompressible liquid, the continuity and momentum
equation reads

∂vx
∂x

+
∂vy
∂y

= 0 (46)

∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

=
1

ρ

(
−∂p
∂x

+
∂τxx
∂x

+
∂τxy
∂y

)
(47)

∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

=
1

ρ

(
−∂p
∂y

+
∂τyx
∂x

+
∂τyy
∂y

)
, (48)

where the stress tensor is ((i, j) = (x, y))

τij = 2µ (γ̇)Dij , Dij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(49)

and the shear rate is

γ̇ =
√

2D : D =

√
2

(
∂vx
∂x

)2

+ 2

(
∂vy
∂y

)2

+

(
∂vx
∂y

+
∂vy
∂x

)2

(50)

As an example, let us recompute the Newtonian case:

9

∂τxx
∂x

+
∂τxy
∂y

=
∂

∂x
(2µDxx) +

∂

∂y
(2µDxy)

=
∂

∂x

(
2µ

1

2

(
∂vx
∂x

+
∂vx
∂x

))
+

∂

∂y

(
2µ

1

2

(
∂vx
∂y

+
∂vy
∂x

))

= µ

∂2vx
∂x2

+
∂2vx
∂y2

+
∂

∂x

 ∂vx
∂x

+
∂vy
∂y︸ ︷︷ ︸

=0,continuity eq.

= µ

(
∂2vx
∂x2

+
∂2vx
∂y2

)
For a power-law fluid, we have µ = Kγ̇n−1.

2.3 Homework description

For the homework problems ("Linear stability of the Couette/Poiseuille flow"), please follow
the next steps:

• Rewrite equation (44) assuming power-law fluid.

• Find the steady-state solution. Remember that in this case, one assumes vx = Vx(y) (Vx
does not vary along x) and vy(x, y) = 0.

• Decompose the flow field into vx(x, y) = Vx(y) + ũ(x, y) and vy(x, y) = 0 + v(x, y) and
rewrite (44).

• Boundary conditions for Couette flow: vx(x,−h) = 0, vx(x,+h) = vwall and vy(x,±h) =
0.

• Boundary conditions for Poiseuille flow: vx(x,±h) = 0 and vy(x,±h) = 0 but p(x, y) =
∆p
L := Π =const.

• For both cases, find a suitable function series in the y direction that satisfies the boundary
conditions:

Ψ(x, y) = eiωx
∑
i

ai(t)fi(y).

• Apply the prescribed numerical technique to obtain stability.

10

